drilistbox 2015-07-25
本文实例讲述了Python基于动态规划算法计算单词距离。分享给大家供大家参考。具体如下:
#!/usr/bin/env python #coding=utf-8 def word_distance(m,n): """compute the least steps number to convert m to n by insert , delete , replace . 动态规划算法,计算单词距离 >>> print word_distance("abc","abec") 1 >>> print word_distance("ababec","abc") 3 """ len_1=lambda x:len(x)+1 c=[[i] for i in range(0,len_1(m)) ] c[0]=[j for j in range(0,len_1(n))] for i in range(0,len(m)): # print i,' ', for j in range(0,len(n)): c[i+1].append( min( c[i][j+1]+1,#插入n[j] c[i+1][j]+1,#删除m[j] c[i][j] + (0 if m[i]==n[j] else 1 )#改 ) ) # print c[i+1][j+1],m[i],n[j],' ', # print '' return c[-1][-1] import doctest doctest.testmod() raw_input("Success!")
希望本文所述对大家的Python程序设计有所帮助。
动态规划有时被称为递归的相反的技术。动态规划方案通常使用一个数组来建立一张表,用于存放被分解成众多子问题的解。当算法执行完毕,最终的解法将会在这个表中找到。今天我们先从我们最熟的斐波那契数列数列开始。
#include <iostream> #include <algorithm> #include <cstring> #include <cstdio&am