zhll 2019-06-28
《对象搜索算法与回收算法》介绍了垃圾回收的基础算法,相当于垃圾回收的方法论。接下来就详细看看垃圾回收的具体实现。
上文提到过现代的商用虚拟机的都是采用分代收集的,不同的区域用不同的收集器。常用的7种收集器,其适用的范围如图所示
<!--more-->
Serial、ParNew、Parallel Scavenge用于新生代;
CMS、Serial Old、Paralled Old用于老年代。
并且他们相互之间以相对固定的组合使用(具体组合关系如上图)。G1是一个独立的收集器不依赖其他6种收集器。ZGC是目前JDK 11的实验收集器。
下面来看看各个收集器的特性
Serial,是单线程执行垃圾回收的。当需要执行垃圾回收时,程序会暂停一切手上的工作,然后单线程执行垃圾回收。
因为新生代的特点是对象存活率低,所以收集算法用的是复制算法,把新生代存活对象复制到老年代,复制的内容不多,性能较好。
单线程地好处就是减少上下文切换,减少系统资源的开销。但这种方式的缺点也很明显,在GC的过程中,会暂停程序的执行。若GC不是频繁发生,这或许是一个不错的选择,否则将会影响程序的执行性能。
对于新生代来说,区域比较小,停顿时间短,所以比较使用。
ParNew同样用于新生代,是Serial的多线程版本,并且在参数、算法(同样是复制算法)上也完全和Serial相同。
Par是Parallel的缩写,但它的并行仅仅指的是收集多线程并行,并不是收集和原程序可以并行进行。ParNew也是需要暂停程序一切的工作,然后多线程执行垃圾回收。
因为是多线程执行,所以在多CPU下,ParNew效果通常会比Serial好。但如果是单CPU则会因为线程的切换,性能反而更差。
新生代的收集器,同样用的是复制算法,也是并行多线程收集。与ParNew最大的不同,它关注的是垃圾回收的吞吐量。
这里的吞吐量指的是 总时间与垃圾回收时间的比例。这个比例越高,证明垃圾回收占整个程序运行的比例越小。
Parallel Scavenge收集器提供两个参数控制垃圾回收的执行:
所以这个参数并不是设置得越小越好。设太小的话,新生代空间会太小,从而更频繁的触发GC。
因为Parallel Scavenge收集器关注的是吞吐量,所以当设置好以上参数的时候,同时不想设置各个区域大小(新生代,老年代等)。可以开启-XX:UseAdaptiveSizePolicy参数,让JVM监控收集的性能,动态调整这些区域大小参数。
老年代的收集器,与Serial一样是单线程,不同的是算法用的是标记-整理(Mark-Compact)。
因为老年代里面对象的存活率高,如果依旧是用复制算法,需要复制的内容较多,性能较差。并且在极端情况下,当存活为100%时,没有办法用复制算法。所以需要用Mark-Compact,以有效地避免这些问题。
老年代的收集器,是Parallel Scavenge老年代的版本。其中的算法替换成Mark-Compact。
CMS,Concurrent Mark Sweep,同样是老年代的收集器。它关注的是垃圾回收最短的停顿时间(低停顿),在老年代并不频繁GC的场景下,是比较适用的。
命名中用的是concurrent,而不是parallel,说明这个收集器是有与工作执行并发的能力的。MS则说明算法用的是Mark Sweep算法。
来看看具体地工作原理。CMS整个过程比之前的收集器要复杂,整个过程分为四步:
由于最耗费时间的并发标记与并发清除阶段都不需要暂停工作,所以整体的回收是低停顿的。
由于CMS以上特性,缺点也是比较明显的,
有人会觉得既然Mark Sweep会造成内存碎片,那么为什么不把算法换成Mark Compact呢?
答案其实很简答,因为当并发清除的时候,用Compact整理内存的话,原来的用户线程使用的内存还怎么用呢?要保证用户线程能继续执行,前提的它运行的资源不受影响嘛。Mark Compact更适合“Stop the World”这种场景下使用。
G1,Garbage First,在JDK 1.7版本正式启用,是当时最前沿的垃圾收集器。G1可以说是CMS的终极改进版,解决了CMS内存碎片、更多的内存空间登问题。虽然流程与CMS比较相似,但底层的原理已是完全不同。
高效益优先。G1会预测垃圾回收的停顿时间,原理是计算老年代对象的效益率,优先回收最大效益的对象。
堆内存结构的不同。以前的收集器分代是划分新生代、老年代、持久代等。
G1则是把内存分为多个大小相同的区域Region,每个Region拥有各自的分代属性,但这些分代不需要连续。
这样的分区可以有效避免内存碎片化问题。
但是这样同样会引申一个新的问题,就是分代的内存不连续,导致在GC搜索垃圾对象的时候需要全盘扫描找出引用内存所在。
为了解决这个问题,G1对于每个Region都维护一个Remembered Set,用于记录对象引用的情况。当GC发生的时候根据Remembered Set的引用情况去搜索。
两种GC模式:
整体的执行流程:
在Region层面上,整体的算法偏向于Mark-Compact。因为是Compact,会影响用户线程执行,所以回收阶段需要STW执行。
在JDK 11当中,加入了实验性质的ZGC。它的回收耗时平均不到2毫秒。它是一款低停顿高并发的收集器。
ZGC几乎在所有地方并发执行的,除了初始标记的是STW的。所以停顿时间几乎就耗费在初始标记上,这部分的实际是非常少的。那么其他阶段是怎么做到可以并发执行的呢?
ZGC主要新增了两项技术,一个是着色指针Colored Pointer,另一个是读屏障Load Barrier。
着色指针Colored Pointer
ZGC利用指针的64位中的几位表示Finalizable、Remapped、Marked1、Marked0(ZGC仅支持64位平台),以标记该指向内存的存储状态。相当于在对象的指针上标注了对象的信息。注意,这里的指针相当于Java术语当中的引用。
在这个被指向的内存发生变化的时候(内存在Compact被移动时),颜色就会发生变化。
在G1的时候就说到过,Compact阶段是需要STW,否则会影响用户线程执行。那么怎么解决这个问题呢?
读屏障Load Barrier
由于着色指针的存在,在程序运行时访问对象的时候,可以轻易知道对象在内存的存储状态(通过指针访问对象),若请求读的内存在被着色了。那么则会触发读屏障。读屏障会更新指针再返回结果,此过程有一定的耗费,从而达到与用户线程并发的效果。
把这两项技术联合下理解,引用R大(RednaxelaFX)的话
与标记对象的传统算法相比,ZGC在指针上做标记,在访问指针时加入Load Barrier(读屏障),比如当对象正被GC移动,指针上的颜色就会不对,这个屏障就会先把指针更新为有效地址再返回,也就是,永远只有单个对象读取时有概率被减速,而不存在为了保持应用与GC一致而粗暴整体的Stop The World。
ZGC虽然目前还在JDK 11还在实验阶段,但由于算法与思想是一个非常大的提升,相信在未来不久会成为主流的GC收集器使用。
更多技术文章、精彩干货,请关注
博客:zackku.com
微信公众号:Zack说码