Spark GraphX实例(1)

BAT 批处理程序 2017-05-22

Spark GraphX是一个分布式的图处理框架。社交网络中,用户与用户之间会存在错综复杂的联系,如微信、QQ、微博的用户之间的好友、关注等关系,构成了一张巨大的图,单机无法处理,只能使用分布式图处理框架处理,Spark GraphX就是一种分布式图处理框架。

1. POM文件

在项目的pom文件中加上Spark GraphX的包:

<dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-graphx_2.10</artifactId>
            <version>1.6.0</version>
        </dependency>

2. 设置运行环境

// 设置运行环境
    val conf = new SparkConf().setAppName("Simple GraphX").setMaster("spark://master:7077").setJars(Seq("E:\\Intellij\\Projects\\SimpleGraphX\\SimpleGraphX.jar"))
    val sc = new SparkContext(conf)

3. 图的构造

图是由若干顶点和边构成的,Spark GraphX里面的图也是一样的,所以在初始图之前,先要定义若干的顶点和边:

// 顶点
    val vertexArray = Array(
      (1L,("Alice", 38)),
      (2L,("Henry", 27)),
      (3L,("Charlie", 55)),
      (4L,("Peter", 32)),
      (5L,("Mike", 35)),
      (6L,("Kate", 23))
    )

    // 边
    val edgeArray = Array(
      Edge(2L, 1L, 5),
      Edge(2L, 4L, 2),
      Edge(3L, 2L, 7),
      Edge(3L, 6L, 3),
      Edge(4L, 1L, 1),
      Edge(5L, 2L, 3),
      Edge(5L, 3L, 8),
      Edge(5L, 6L, 8)
    )

然后再利用点和边生成各自的RDD:

//构造vertexRDD和edgeRDD
    val vertexRDD:RDD[(Long,(String,Int))] = sc.parallelize(vertexArray)
    val edgeRDD:RDD[Edge[Int]] = sc.parallelize(edgeArray)

最后利用两个RDD生成图:

// 构造图
    val graph:Graph[(String,Int),Int] = Graph(vertexRDD, edgeRDD)

4. 图的属性操作

Spark GraphX图的属性包括:

(1)graph.vertices:图中的所有顶点;

(2)graph.edges:图中所有的边;

(3)graph.triplets:由三部分组成,源顶点,目的顶点,以及两个顶点之间的边;

(4)graph.degrees:图中所有顶点的度;

(5)graph.inDegrees:图中所有顶点的入度;

(6)graph.outDegrees:图中所有顶点的出度;

对这些属性的操作,直接上代码:

//图的属性操作
    println("*************************************************************")
    println("属性演示")
    println("*************************************************************")
    // 方法一
    println("找出图中年龄大于20的顶点方法之一:")
    graph.vertices.filter{case(id,(name,age)) => age>20}.collect.foreach {
      case(id,(name,age)) => println(s"$name is $age")
    }

    // 方法二
    println("找出图中年龄大于20的顶点方法之二:")
    graph.vertices.filter(v => v._2._2>20).collect.foreach {
      v => println(s"${v._2._1} is ${v._2._2}")
    }

    // 边的操作
    println("找出图中属性大于3的边:")
    graph.edges.filter(e => e.attr>3).collect.foreach(e => println(s"${e.srcId} to ${e.dstId} att ${e.attr}"))
    println

    // Triplet操作
    println("列出所有的Triples:")
    for(triplet <- graph.triplets.collect){
      println(s"${triplet.srcAttr._1} likes ${triplet.dstAttr._1}")
    }
    println

    println("列出边属性>3的Triples:")
    for(triplet <- graph.triplets.filter(t => t.attr > 3).collect){
      println(s"${triplet.srcAttr._1} likes ${triplet.dstAttr._1}")
    }
    println

    // Degree操作
    println("找出图中最大的出度,入度,度数:")
    def max(a:(VertexId,Int), b:(VertexId,Int)):(VertexId,Int) = {
      if (a._2>b._2) a else b
    }
    println("Max of OutDegrees:" + graph.outDegrees.reduce(max))
    println("Max of InDegrees:" + graph.inDegrees.reduce(max))
    println("Max of Degrees:" + graph.degrees.reduce(max))
    println

 运行结果:

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
17/05/22 20:45:35 INFO Slf4jLogger: Slf4jLogger started
17/05/22 20:45:35 INFO Remoting: Starting remoting
17/05/22 20:45:35 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://[email protected]:53375]
*************************************************************
属性演示
*************************************************************
找出图中年龄大于20的顶点方法之一:
Peter is 32
Alice is 38
Charlie is 55
Mike is 35
找出图中年龄大于20的顶点方法之二:
Peter is 32
Alice is 38
Charlie is 55
Mike is 35
找出图中属性大于3的边:
3 to 2 att 7
5 to 3 att 8
5 to 6 att 8

列出所有的Triples:
Henry likes Alice
Henry likes Peter
Charlie likes Henry
Charlie likes Kate
Peter likes Alice
Mike likes Henry
Mike likes Charlie
Mike likes Kate

列出边属性>3的Triples:
Charlie likes Henry
Mike likes Charlie
Mike likes Kate

找出图中最大的出度,入度,度数:
Max of OutDegrees:(5,3)
Max of InDegrees:(1,2)
Max of Degrees:(2,4)

相关推荐