RememberMePlease 2020-06-26
带权重的有向图上单源最短路径问题。且权重都为非负值。如果采用的实现方法合适,Dijkstra运行时间要低于Bellman-Ford算法。
最小距离的判断标准 dist[j] = min(dist[j], dist[i] + weight[i][j])
import heapq import math def dijkstra(graph, init_node): pqueue = [] heapq.heappush(pqueue, (0, init_node)) # min heap, sort data item automatically visited = set() # actually you dont have to use this. weight = dict.fromkeys(graph.keys(), math.inf) weight[init_node] = 0 connection_dict = {init_node: "Path: Start From -> "} # save connection records while len(pqueue) > 0: pair = heapq.heappop(pqueue) # Pop the smallest item off the heap cost, start = pair[0], pair[1] visited.add(start) for end in graph[start].keys(): if end not in visited and cost + graph[start][end] < weight[end]: # dist[j] = min(dist[j], dist[i] + weight[i][j]) heapq.heappush(pqueue, (cost + graph[start][end], end)) connection_dict[end] = start weight[end] = cost + graph[start][end] return {v: k for k, v in connection_dict.items()}, weight if __name__ == ‘__main__‘: graph_dict = { "A": {"B": 5, "C": 1}, "B": {"A": 5, "C": 2, "D": 1}, "C": {"A": 1, "B": 2, "D": 4, "E": 8}, "D": {"B": 1, "C": 4, "E": 3, "F": 6}, "E": {"C": 8, "D": 3}, "F": {"D": 6}, } path, distance = dijkstra(graph_dict, "A") print(path) # {‘Path: Start From -> ‘: ‘A‘, ‘C‘: ‘B‘, ‘A‘: ‘C‘, ‘B‘: ‘D‘, ‘D‘: ‘F‘} print(distance) # {‘A‘: 0, ‘B‘: 3, ‘C‘: 1, ‘D‘: 4, ‘E‘: 7, ‘F‘: 10}
import heapq def dijkstra(graph, init_node): primary_queue = [] heapq.heappush(primary_queue, (0, init_node)) # the reason why i need to use this heap is because # i want to take advantage of its automatic sorting result = dict.fromkeys(graph.keys(), 123131) result[init_node] = 0 while len(primary_queue) > 0: cost, start = heapq.heappop(primary_queue) for end in graph[start].keys(): if result[start] + graph[start][end] < result[end]: # dist[j] = min(dist[j], dist[i] + weight[i][j]) heapq.heappush(primary_queue, (result[start] + graph[start][end], end)) result[end] = result[start] + graph[start][end] return result