andrewwf 2020-05-08
Scrapy框架的使用
- pySpider
- 什么是框架?
- 就是一个具有很强通用性且集成了很多功能的项目模板(可以被应用在各种需求中)
- scrapy集成好的功能:
- 高性能的数据解析操作(xpath)
- 高性能的数据下载
- 高性能的持久化存储
- 中间件
- 全栈数据爬取操作
- 分布式:redis
- 请求传参的机制(深度爬取)
- scrapy中合理的应用selenium
- 环境的安装
a. pip3 install wheel
b. 下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
c. 进入下载目录,执行 pip3 install Twisted?17.1.0?cp35?cp35m?win_amd64.whl
d. pip3 install pywin32
e. pip3 install scrapy
- 创建工程
- scrapy startproject ProName
- cd ProName
- scrapy genspider spiderName www.xxx.com :创建爬虫文件
- 执行:scrapy crawl spiderName
- settings:
- 不遵从robots协议
- UA伪装
- LOG_LEVEL = ‘ERROR‘
- LOG_FILE = ‘logging.log‘
- scrapy的数据解析
- extract():列表是有多个列表元素
- extract_first():列表元素只有单个
- scrapy的持久化存储
- 基于终端指令:
- 只可以将parse方法的返回值存储到磁盘文件中
- scrapy crawl first -o file.csv
- 基于管道:pipelines.py
- 编码流程:
- 1.数据解析
- 2.在item的类中定义相关的属性
- 3.将解析的数据存储封装到item类型的对象中.item[‘p‘]
- 4.将item对象提交给管道
- 5.在管道类中的process_item方法负责接收item对象,然后对item进行任意形式的持久化存储
- 6.在配置文件中开启管道
- 细节补充:
- 管道文件中的一个管道类表示将数据存储到某一种形式的平台中。
- 如果管道文件中定义了多个管道类,爬虫类提交的item会给到优先级最高的管道类。
- process_item方法的实现中的return item的操作表示将item传递给下一个即将被执行的管道类hy.py实例代码:
# -*- coding: utf-8 -*-
import scrapy
class HySpider(scrapy.Spider):
name = ‘hy‘
# allowed_domains = [‘www.xx.com‘]
start_urls = [‘https://www.huya.com/g/3203‘]
def parse(self, response):
li_list=response.xpath(‘//*[@id="js-live-list"]/li‘)
data=[]
for li in li_list:
title=li.xpath("./a[2]/text()").extract_first()
nick=li.xpath("./span/span[1]/i/text()").extract_first()
hot=li.xpath("./span/span[2]/i[2]/text()").extract_first()
dic={"title":title,"nick":nick,"hot":hot}
data.append(dic)
return data在pycharm终端输入命令:scrapy crawl hy -o huya.csv 回车执行即可。
hy.py代码:
# -*- coding: utf-8 -*-
import scrapy
from huya.items import HuyaItem
class HySpider(scrapy.Spider):
name = ‘hy‘
# allowed_domains = [‘www.xx.com‘]
start_urls = [‘https://www.huya.com/g/3203‘]
def parse(self, response):
li_list=response.xpath(‘//*[@id="js-live-list"]/li‘)
# data=[]*
for li in li_list:
title=li.xpath("./a[2]/text()").extract_first()
nick=li.xpath("./span/span[1]/i/text()").extract_first()
hot=li.xpath("./span/span[2]/i[2]/text()").extract_first()
item=HuyaItem()
item["title"]=title
item["nick"]=nick
item["hot"]=hot
yield item
# dic={"title":title,"nick":nick,"hot":hot}*
# data.append(dic)*
# return data*item类代码:
# -*- coding: utf-8 -*-
# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html
import scrapy
class HuyaItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
title = scrapy.Field()
nick = scrapy.Field()
hot = scrapy.Field()pipe类代码(同步实例化到本地和mysql中):
# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don‘t forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
import pymysql
class HuyaPipeline(object):
def open_spider(self,spider):
print("open_spider start work...")
self.fp=open("huya.txt","w",encoding="utf-8")
def process_item(self, item, spider):
self.fp.write(item["title"]+"--"+item["nick"]+"--"+item["hot"]+"\n")
print(item["title"]+":持久化完毕...")
return item
def close_spider(self,spider):
print("close_spider end work...")
self.fp.close()
class mysqlPipeline(object):
def open_spider(self,spider):
print("open_spider start work...")
self.conn=pymysql.Connect(host="127.0.0.1",port=3306,user="root",password="root",db="Spider",charset="utf8")
def process_item(self, item, spider):
sql="insert into huya values (‘%s‘,‘%s‘,‘%s‘)"%(item["title"],item["nick"],item["hot"])
self.cursor=self.conn.cursor()
try:
self.cursor.execute(sql)
self.conn.commit()
except Exception as e:
self.conn.rollback()
return item
def close_spider(self,spider):
print("close_spider end work...")setting中需要修改:
ITEM_PIPELINES = {
‘huya.pipelines.HuyaPipeline‘: 300,
‘huya.pipelines.mysqlPipeline‘: 301
}**如果想要同步持久化到redis中只需要在pipe中添加类:
class RedisPipeLine(object):
conn = None
def open_spider(self,spider):
self.conn = Redis(host=‘127.0.0.1‘,port=6379)
def process_item(self,item,spider):
self.conn.lpush(‘huyaList‘,item)
return item**然后修改setting中的ITEM_PIPELINES即可。