【深度学习系列】PaddlePaddle之手写数字识别

WeiXiaoyu 2018-04-02

上周在搜索关于深度学习分布式运行方式的资料时,无意间搜到了paddlepaddle,发现这个框架的分布式训练方案做的还挺不错的,想跟大家分享一下。不过呢,这块内容太复杂了,所以就简单的介绍一下paddlepaddle的第一个“hello word”程序----mnist手写数字识别。下一次再介绍用PaddlePaddle做分布式训练的方案。其实之前也写过一篇用CNN识别手写数字集的文章(链接戳这里~),是用keras实现的,这次用了paddlepaddle后,正好可以简单对比一下两个框架的优劣。

什么是PaddlePaddle?

PaddlePaddle是百度推出的一个深度学习框架,可能大多数人平常用的比较多的一般是tensorflow,caffe,mxnet等,但其实PaddlePaddle也是一个非常不错的框架(据说以前叫Paddle,现在改名叫PaddlePaddle,不知道为啥总觉得有股莫名的萌点)

PaddlePaddle能做什么?

传统的基本都能做,尤其对NLP的支持很好,譬如情感分析,word embedding,语言模型等,反正你想得到的,常见的都可以用它来试一试~

PaddlePaddle的安装

不得不吐槽一下PaddlePaddle的安装,官网上说“PaddlePaddle目前唯一官方支持的运行的方式是Docker容器”,而docker其实在国内还并不是特别的流行,之前遇到的所有的框架,都有很多种安装方式,非常方便,所以这个唯一支持docker让人觉得非常诡异 = =!不过偶然试了一下,居然可以用pip install,不过为啥官网上没有写呢?所以,对于新手来说,最简单的安装方式就是:

  • CPU版本安装

      pip install paddlepaddle

  • GPU版本安装

      pip install paddlepaddle-gpu

训练步骤

传统的方式这次就不展开讲了,为了对比我们还是用CNN来进行训练。PaddlePaddle训练一次模型完整的过程可以如下几个步骤:

导入数据---->定义网络结构---->训练模型---->保存模型---->测试结果

下面,我直接用代码来展示训练的过程(以后代码都会放在github里):

上面的代码看起来很长,但结构还是很清楚的。下面我们用实际数据测试一下,看一下效果到底怎么样~

1. 导入数据方便。这次训练的手写数字识别数据量比较小,但是如果想要添加数据,也非常方便,直接添加到相应目录下。

相关推荐