songbinxu 2019-06-21
本文使用tensorflow训练逻辑回归模型,并将其与scikit-learn做比较。数据集来自Andrew Ng的网上公开课程Deep Learning
#!/usr/bin/env python # -*- coding=utf-8 -*- # @author: 陈水平 # @date: 2017-01-04 # @description: compare the logistics regression of tensorflow with sklearn based on the exercise of deep learning course of Andrew Ng. # @ref: http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex4/ex4.html import tensorflow as tf import numpy as np from sklearn.linear_model import LogisticRegression from sklearn import preprocessing # Read x and y x_data = np.loadtxt("ex4x.dat").astype(np.float32) y_data = np.loadtxt("ex4y.dat").astype(np.float32) scaler = preprocessing.StandardScaler().fit(x_data) x_data_standard = scaler.transform(x_data) # We evaluate the x and y by sklearn to get a sense of the coefficients. reg = LogisticRegression(C=999999999, solver="newton-cg") # Set C as a large positive number to minimize the regularization effect reg.fit(x_data, y_data) print "Coefficients of sklearn: K=%s, b=%f" % (reg.coef_, reg.intercept_) # Now we use tensorflow to get similar results. W = tf.Variable(tf.zeros([2, 1])) b = tf.Variable(tf.zeros([1, 1])) y = 1 / (1 + tf.exp(-tf.matmul(x_data_standard, W) + b)) loss = tf.reduce_mean(- y_data.reshape(-1, 1) * tf.log(y) - (1 - y_data.reshape(-1, 1)) * tf.log(1 - y)) optimizer = tf.train.GradientDescentOptimizer(1.3) train = optimizer.minimize(loss) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) for step in range(100): sess.run(train) if step % 10 == 0: print step, sess.run(W).flatten(), sess.run(b).flatten() print "Coefficients of tensorflow (input should be standardized): K=%s, b=%s" % (sess.run(W).flatten(), sess.run(b).flatten()) print "Coefficients of tensorflow (raw input): K=%s, b=%s" % (sess.run(W).flatten() / scaler.scale_, sess.run(b).flatten() - np.dot(scaler.mean_ / scaler.scale_, sess.run(W))) # Problem solved and we are happy. But... # I'd like to implement the logistic regression from a multi-class viewpoint instead of binary. # In machine learning domain, it is called softmax regression # In economic and statistics domain, it is called multinomial logit (MNL) model, proposed by Daniel McFadden, who shared the 2000 Nobel Memorial Prize in Economic Sciences. print "------------------------------------------------" print "We solve this binary classification problem again from the viewpoint of multinomial classification" print "------------------------------------------------" # As a tradition, sklearn first reg = LogisticRegression(C=9999999999, solver="newton-cg", multi_class="multinomial") reg.fit(x_data, y_data) print "Coefficients of sklearn: K=%s, b=%f" % (reg.coef_, reg.intercept_) print "A little bit difference at first glance. What about multiply them with 2?" # Then try tensorflow W = tf.Variable(tf.zeros([2, 2])) # first 2 is feature number, second 2 is class number b = tf.Variable(tf.zeros([1, 2])) V = tf.matmul(x_data_standard, W) + b y = tf.nn.softmax(V) # tensorflow provide a utility function to calculate the probability of observer n choose alternative i, you can replace it with `y = tf.exp(V) / tf.reduce_sum(tf.exp(V), keep_dims=True, reduction_indices=[1])` # Encode the y label in one-hot manner lb = preprocessing.LabelBinarizer() lb.fit(y_data) y_data_trans = lb.transform(y_data) y_data_trans = np.concatenate((1 - y_data_trans, y_data_trans), axis=1) # Only necessary for binary class loss = tf.reduce_mean(-tf.reduce_sum(y_data_trans * tf.log(y), reduction_indices=[1])) optimizer = tf.train.GradientDescentOptimizer(1.3) train = optimizer.minimize(loss) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) for step in range(100): sess.run(train) if step % 10 == 0: print step, sess.run(W).flatten(), sess.run(b).flatten() print "Coefficients of tensorflow (input should be standardized): K=%s, b=%s" % (sess.run(W).flatten(), sess.run(b).flatten()) print "Coefficients of tensorflow (raw input): K=%s, b=%s" % ((sess.run(W) / scaler.scale_).flatten(), sess.run(b).flatten() - np.dot(scaler.mean_ / scaler.scale_, sess.run(W)))
输出如下:
Coefficients of sklearn: K=[[ 0.14834077 0.15890845]], b=-16.378743 0 [ 0.33699557 0.34786162] [ -4.84287721e-09] 10 [ 1.15830743 1.22841871] [ 0.02142336] 20 [ 1.3378191 1.42655993] [ 0.03946959] 30 [ 1.40735555 1.50197577] [ 0.04853692] 40 [ 1.43754184 1.53418231] [ 0.05283691] 50 [ 1.45117068 1.54856908] [ 0.05484771] 60 [ 1.45742035 1.55512536] [ 0.05578374] 70 [ 1.46030474 1.55814099] [ 0.05621871] 80 [ 1.46163988 1.55953443] [ 0.05642065] 90 [ 1.46225858 1.56017959] [ 0.0565144] Coefficients of tensorflow (input should be standardized): K=[ 1.46252561 1.56045783], b=[ 0.05655487] Coefficients of tensorflow (raw input): K=[ 0.14831361 0.15888004], b=[-16.26265144] ------------------------------------------------ We solve this binary classification problem again from the viewpoint of multinomial classification ------------------------------------------------ Coefficients of sklearn: K=[[ 0.07417039 0.07945423]], b=-8.189372 A little bit difference at first glance. What about multiply them with 2? 0 [-0.33699557 0.33699557 -0.34786162 0.34786162] [ 6.05359674e-09 -6.05359674e-09] 10 [-0.68416572 0.68416572 -0.72988117 0.72988123] [ 0.02157043 -0.02157041] 20 [-0.72234094 0.72234106 -0.77087188 0.77087194] [ 0.02693938 -0.02693932] 30 [-0.72958517 0.72958535 -0.7784785 0.77847856] [ 0.02802362 -0.02802352] 40 [-0.73103166 0.73103184 -0.77998811 0.77998811] [ 0.02824244 -0.02824241] 50 [-0.73132294 0.73132324 -0.78029168 0.78029174] [ 0.02828659 -0.02828649] 60 [-0.73138171 0.73138207 -0.78035289 0.78035301] [ 0.02829553 -0.02829544] 70 [-0.73139352 0.73139393 -0.78036523 0.78036535] [ 0.02829732 -0.0282972 ] 80 [-0.73139596 0.73139632 -0.78036767 0.78036791] [ 0.02829764 -0.02829755] 90 [-0.73139644 0.73139679 -0.78036815 0.78036839] [ 0.02829781 -0.02829765] Coefficients of tensorflow (input should be standardized): K=[-0.7313965 0.73139679 -0.78036827 0.78036839], b=[ 0.02829777 -0.02829769] Coefficients of tensorflow (raw input): K=[-0.07417037 0.07446811 -0.07913655 0.07945422], b=[ 8.1893692 -8.18937111]
对于逻辑回归,损失函数比线性回归模型复杂了一些。首先需要通过sigmoid函数,将线性回归的结果转化为0至1之间的概率值。然后写出每个样本的发生概率(似然),那么所有样本的发生概率就是每个样本发生概率的乘积。为了求导方便,我们对所有样本的发生概率取对数,保持其单调性的同时,可以将连乘变为求和(加法的求导公式比乘法的求导公式简单很多)。对数极大似然估计方法的目标函数是最大化所有样本的发生概率;机器学习习惯将目标函数称为损失,所以将损失定义为对数似然的相反数,以转化为极小值问题。
我们提到逻辑回归时,一般指的是二分类问题;然而这套思想是可以很轻松就拓展为多分类问题的,在机器学习领域一般称为softmax回归模型。本文的作者是统计学与计量经济学背景,因此一般将其称为MNL模型。