vs00ASPNET 2020-04-17
代码来源:https://github.com/eriklindernoren/ML-From-Scratch
卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html
激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus):https://www.cnblogs.com/xiximayou/p/12713081.html
损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html
优化器的实现(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html
卷积层反向传播过程:https://www.cnblogs.com/xiximayou/p/12713930.html
全连接层实现代码:
class Dense(Layer): """A fully-connected NN layer. Parameters: ----------- n_units: int The number of neurons in the layer. input_shape: tuple The expected input shape of the layer. For dense layers a single digit specifying the number of features of the input. Must be specified if it is the first layer in the network. """ def __init__(self, n_units, input_shape=None): self.layer_input = None self.input_shape = input_shape self.n_units = n_units self.trainable = True self.W = None self.w0 = None def initialize(self, optimizer): # Initialize the weights limit = 1 / math.sqrt(self.input_shape[0]) self.W = np.random.uniform(-limit, limit, (self.input_shape[0], self.n_units)) self.w0 = np.zeros((1, self.n_units)) # Weight optimizers self.W_opt = copy.copy(optimizer) self.w0_opt = copy.copy(optimizer) def parameters(self): return np.prod(self.W.shape) + np.prod(self.w0.shape) def forward_pass(self, X, training=True): self.layer_input = X return X.dot(self.W) + self.w0 def backward_pass(self, accum_grad): # Save weights used during forwards pass W = self.W if self.trainable: # Calculate gradient w.r.t layer weights grad_w = self.layer_input.T.dot(accum_grad) grad_w0 = np.sum(accum_grad, axis=0, keepdims=True) # Update the layer weights self.W = self.W_opt.update(self.W, grad_w) self.w0 = self.w0_opt.update(self.w0, grad_w0) # Return accumulated gradient for next layer # Calculated based on the weights used during the forward pass accum_grad = accum_grad.dot(W.T) return accum_grad def output_shape(self): return (self.n_units, )