zhongkeli 2020-05-27
说明:最近一直在做关系抽取的任务,此次仅仅是记录一个实用的简单示例
参考https://www.cnblogs.com/jclian91/p/12301056.html
参考https://blog.csdn.net/asialee_bird/article/details/102747435
import pandas as pd
import codecs, gc
import numpy as np
from sklearn.model_selection import KFold
from keras_bert import load_trained_model_from_checkpoint, Tokenizer
from keras.metrics import top_k_categorical_accuracy
from keras.layers import *
from keras.callbacks import *
from keras.models import Model
import keras.backend as K
from keras.optimizers import Adam
from keras.utils import to_categorical
# 读取训练集和测试集
train_df = pd.read_csv(r‘D:\Program Files\FileRecv\情感分析数据集/data_train.csv‘, sep=‘\t‘, names=[‘id‘, ‘type‘, ‘contents‘, ‘labels‘]).astype(str)
test_df = pd.read_csv(r‘D:\Program Files\FileRecv\情感分析数据集/data_test.csv‘, sep=‘\t‘, names=[‘id‘, ‘type‘, ‘contents‘]).astype(str)
train_df = train_df[:200]
test_df = test_df[:20]
maxlen = 100 # 设置序列长度为120,要保证序列长度不超过512
# 预训练好的模型
config_path = r‘C:\Users\Downloads\chinese_L-12_H-768_A-12/bert_config.json‘
checkpoint_path = r‘C:\Users\Downloads\chinese_L-12_H-768_A-12/bert_model.ckpt‘
dict_path = r‘C:\Users\Downloads\chinese_L-12_H-768_A-12/vocab.txt‘
# 将词表中的词编号转换为字典
token_dict = {}
with codecs.open(dict_path, ‘r‘, ‘utf8‘) as reader:
for line in reader:
token = line.strip()
token_dict[token] = len(token_dict)
# 重写tokenizer
class OurTokenizer(Tokenizer):
def _tokenize(self, text):
R = []
for c in text:
if c in self._token_dict:
R.append(c)
elif self._is_space(c):
R.append(‘[unused1]‘) # 用[unused1]来表示空格类字符
else:
R.append(‘[UNK]‘) # 不在列表的字符用[UNK]表示
return R
tokenizer = OurTokenizer(token_dict)
# 让每条文本的长度相同,用0填充
def seq_padding(X, padding=0):
L = [len(x) for x in X]
ML = max(L)
return np.array([
np.concatenate([x, [padding] * (ML - len(x))]) if len(x) < ML else x for x in X
])
# data_generator只是一种为了节约内存的数据方式
class data_generator:
def __init__(self, data, batch_size=32, shuffle=True):
self.data = data
self.batch_size = batch_size
self.shuffle = shuffle
self.steps = len(self.data) // self.batch_size
if len(self.data) % self.batch_size != 0:
self.steps += 1
def __len__(self):
return self.steps
def __iter__(self):
while True:
idxs = list(range(len(self.data)))
if self.shuffle:
np.random.shuffle(idxs)
X1, X2, Y = [], [], []
for i in idxs:
d = self.data[i]
text = d[0][:maxlen]
x1, x2 = tokenizer.encode(first=text)
y = d[1]
X1.append(x1)
X2.append(x2)
Y.append([y])
if len(X1) == self.batch_size or i == idxs[-1]:
X1 = seq_padding(X1)
X2 = seq_padding(X2)
Y = seq_padding(Y)
yield [X1, X2], Y[:, 0, :]
[X1, X2, Y] = [], [], []
# 计算top-k正确率,当预测值的前k个值中存在目标类别即认为预测正确
def acc_top2(y_true, y_pred):
return top_k_categorical_accuracy(y_true, y_pred, k=2)
# bert模型设置
def build_bert(nclass):
bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path, seq_len=None) # 加载预训练模型
for l in bert_model.layers:
l.trainable = True
x1_in = Input(shape=(None,))
x2_in = Input(shape=(None,))
x = bert_model([x1_in, x2_in])
x = Lambda(lambda x: x[:, 0])(x) # 取出[CLS]对应的向量用来做分类
p = Dense(nclass, activation=‘softmax‘)(x)
model = Model([x1_in, x2_in], p)
model.compile(loss=‘categorical_crossentropy‘,
optimizer=Adam(1e-5), # 用足够小的学习率
metrics=[‘accuracy‘, acc_top2])
print(model.summary())
return model
# 训练数据、测试数据和标签转化为模型输入格式
DATA_LIST = []
for data_row in train_df.iloc[:].itertuples():
DATA_LIST.append((data_row.contents, to_categorical(data_row.labels, 3)))
DATA_LIST = np.array(DATA_LIST)
DATA_LIST_TEST = []
for data_row in test_df.iloc[:].itertuples():
DATA_LIST_TEST.append((data_row.contents, to_categorical(0, 3)))
DATA_LIST_TEST = np.array(DATA_LIST_TEST)
# 交叉验证训练和测试模型
def run_cv(nfold, data, data_labels, data_test):
kf = KFold(n_splits=nfold, shuffle=True, random_state=520).split(data)
train_model_pred = np.zeros((len(data), 3))
test_model_pred = np.zeros((len(data_test), 3))
for i, (train_fold, test_fold) in enumerate(kf):
X_train, X_valid, = data[train_fold, :], data[test_fold, :]
model = build_bert(3)
early_stopping = EarlyStopping(monitor=‘val_acc‘, patience=3) # 早停法,防止过拟合
plateau = ReduceLROnPlateau(monitor="val_acc", verbose=1, mode=‘max‘, factor=0.5,
patience=2) # 当评价指标不在提升时,减少学习率
checkpoint = ModelCheckpoint(‘./bert_dump/‘ + str(i) + ‘.hdf5‘, monitor=‘val_acc‘, verbose=2,
save_best_only=True, mode=‘max‘, save_weights_only=True) # 保存最好的模型
train_D = data_generator(X_train, shuffle=True)
valid_D = data_generator(X_valid, shuffle=True)
test_D = data_generator(data_test, shuffle=False)
# 模型训练
model.fit_generator(
train_D.__iter__(),
steps_per_epoch=len(train_D),
epochs=5,
validation_data=valid_D.__iter__(),
validation_steps=len(valid_D),
callbacks=[early_stopping, plateau, checkpoint],
)
# model.load_weights(‘./bert_dump/‘ + str(i) + ‘.hdf5‘)
# return model
train_model_pred[test_fold, :] = model.predict_generator(valid_D.__iter__(), steps=len(valid_D), verbose=1)
test_model_pred += model.predict_generator(test_D.__iter__(), steps=len(test_D), verbose=1)
del model
gc.collect() # 清理内存
K.clear_session() # clear_session就是清除一个session
# break
return train_model_pred, test_model_pred
# n折交叉验证
train_model_pred, test_model_pred = run_cv(2, DATA_LIST, None, DATA_LIST_TEST)
test_pred = [np.argmax(x) for x in test_model_pred]
# 将测试集预测结果写入文件
output = pd.DataFrame({‘id‘: test_df.id, ‘sentiment‘: test_pred})
output.to_csv(‘results.csv‘, index=None)