Spark集群 + Akka + Kafka + Scala 开发(3) : 开发一个Akka + Spark的应用

编程爱好者联盟 2016-10-02

前言

在Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境中,我们已经部署好了一个Spark的开发环境。 在Spark集群 + Akka + Kafka + Scala 开发(2) : 开发一个Spark应用中,我们已经写好了一个Spark的应用。 本文的目标是写一个基于akka的scala工程,在一个spark standalone的集群环境中运行。

akka是什么?

akka的作用

akka的名字是action kernel的回文。根据官方定义:akka用于resilient elastic distributed real-time transaction processing。 个人理解是: resilient:是指对需求和安全性等方面(来自于外部的)的一种适应力(弹性)。 elastic:是指对资源利用方面的弹性。 因此,akka是一个满足需求弹性、资源分配弹性的分布式实时事务处理系统。 akka只是一个类库,一个工具,并没有提供一个平台。

akka的运行模式和用例

  • akka有两种运行模式:
  • As a library: 一个使用于web应用,把akka作为一个普通的jar包放到classpath或者WEB-INF/lib。
  • As an application: 也称为micro system。
  • akka的用例 akka的用例很多,可以参照Examples of use-cases for Akka.

本文中的用例

在本文中,一个Spark + akka的环境里,akka被用于as an application模式下。 我们会创建一个akka工程,含有两个应用:

  • akka host application 建立一个actor system, 定义了所有的任务(actors)。等待客户端的请求。 部分actor使用了spark的云计算功能。 这是一个spark的应用。
  • akka client application 调用host application上特定的actor。

我们看出,这里我们把akka作为一个任务处理器,并通过spark来完成任务。

项目结构和文件说明

说明

这个工程包含了两个应用。 一个Consumer应用:CusomerApp:实现了通过Spark的Stream+Kafka的技术来实现处理消息的功能。 一个Producer应用:ProducerApp:实现了向Kafka集群发消息的功能。

文件结构

AkkaSampleApp    # 项目目录
|-- build.bat    # build文件    
|-- src
    |-- main
        |-- resources
            |-- application.conf   # Akka Server应用的配置文件
            |-- client.conf        # Akka Client应用的配置文件
        |-- scala
            |-- ClientActor.scala       # Akka Client的Actor:提供了一种调用Server Actor的方式。
            |-- ClientApp.scala         # Akka Client应用
            |-- ProductionReaper.scala  # Akka Shutdown pattern的实现者
            |-- Reaper.scala            # Akka Shutdown pattern的Reaper抽象类
            |-- ServerActor.scala       # Akka Server的Actor,提供一个求1到n的MapReduce计算。使用了Spark。
            |-- ServerApp.scala         # Akka Server应用

构建工程目录

可以运行:

mkdir AkkaSampleApp
mkdir -p /AkkaSampleApp/src/main/resources
mkdir -p /AkkaSampleApp/src/main/scala

代码

build.sbt

name := "akka-sample-app"
 
version := "1.0"
 
scalaVersion := "2.11.8"

scalacOptions += "-feature"
scalacOptions += "-deprecation"
scalacOptions += "-language:postfixOps"
 
libraryDependencies ++= Seq(
  "com.typesafe.akka" %% "akka-actor" % "2.4.10",
  "com.typesafe.akka" %% "akka-remote" % "2.4.10",
  "org.apache.spark" %% "spark-core" % "2.0.0"
)

resolvers += "Akka Snapshots" at "http://repo.akka.io/snapshots/"

application.conf

akka {
  #loglevel = "DEBUG"
  actor {
    provider = "akka.remote.RemoteActorRefProvider"
  }
  remote {
    enabled-transports = ["akka.remote.netty.tcp"]
    netty.tcp {
      hostname = "127.0.0.1"
      port = 2552
    }
    #log-sent-messages = on
    #log-received-messages = on
  }
}

cient.conf

akka {
  #loglevel = "DEBUG"
  actor {
    provider = "akka.remote.RemoteActorRefProvider"
  }
  remote {
    enabled-transports = ["akka.remote.netty.tcp"]
    netty.tcp {
      hostname = "127.0.0.1"
      port = 0
    }
    #log-sent-messages = on
    #log-received-messages = on
  }
}

[blockquote]

注:port = 0表示这个端口号会自动生成一个。

[/blockquote]

ClientActor.scala

import akka.actor._
import akka.event.Logging

class ClientActor(serverPath: String) extends Actor {
  val log = Logging(context.system, this)
  val serverActor = context.actorSelection(serverPath)

  def receive = {
    case msg: String =>
        log.info(s"ClientActor received message '$msg'")
        serverActor ! 10000L
  }
}

ClientApp.scala

import com.typesafe.config.ConfigFactory
import akka.actor._
import akka.remote.RemoteScope
import akka.util._

import java.util.concurrent.TimeUnit

import scala.concurrent._
import scala.concurrent.duration._

object ClientApp {
  def main(args: Array[String]): Unit = {
    val system = ActorSystem("LocalSystem", ConfigFactory.load("client"))
    
    // get the remote actor via the server actor system's address
    val serverAddress = AddressFromURIString("akka.tcp://[email protected]:2552")
    val actor = system.actorOf(Props[ServerActor].withDeploy(Deploy(scope = RemoteScope(serverAddress))))

    // invoke the remote actor via a client actor.
    // val remotePath = "akka.tcp://[email protected]:2552/user/serverActor"
    // val actor = system.actorOf(Props(classOf[ClientActor], remotePath), "clientActor")

    buildReaper(system, actor)

    // tell
    actor ! 10000L
    
    waitShutdown(system, actor)
  }

  private def buildReaper(system: ActorSystem, actor: ActorRef): Unit = {
    import Reaper._
    val reaper = system.actorOf(Props(classOf[ProductionReaper]))
    
    // Watch the action
    reaper ! WatchMe(actor)
  }

  private def waitShutdown(system: ActorSystem, actor: ActorRef): Unit = {
    // trigger the shutdown operation in ProductionReaper
    system.stop(actor)
    
    // wait to shutdown
    Await.result(system.whenTerminated, 60.seconds)
  }
}

ProductionReaper.scala

当所有的Actor停止后,终止Actor System。

class ProductionReaper extends Reaper {
  // Shutdown
  def allSoulsReaped(): Unit = {
    context.system.terminate()
  }
}

Reaper.scala

import akka.actor.{Actor, ActorRef, Terminated}
import scala.collection.mutable.ArrayBuffer

object Reaper {
  // Used by others to register an Actor for watching
  case class WatchMe(ref: ActorRef)
}

abstract class Reaper extends Actor {
  import Reaper._

  // Keep track of what we're watching
  val watched = ArrayBuffer.empty[ActorRef]

  // Derivations need to implement this method.  It's the
  // hook that's called when everything's dead
  def allSoulsReaped(): Unit

  // Watch and check for termination
  final def receive = {
    case WatchMe(ref) =>
      context.watch(ref)
      watched += ref
    case Terminated(ref) =>
      watched -= ref
      if (watched.isEmpty) allSoulsReaped()
  }
}

ServerActor.scala

提供一个求1到n平方和的MapReduce计算。

import akka.actor.Actor
import akka.actor.Props
import akka.event.Logging

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

class ServerActor extends Actor {
  val log = Logging(context.system, this)

  def receive = {
    case n: Long =>
        squareSum(n)
  }

  private def squareSum(n: Long): Long = {
    val conf = new SparkConf().setAppName("Simple Application")
    val sc = new SparkContext(conf)

    val squareSum = sc.parallelize(1L until n).map { i => 
      i * i
    }.reduce(_ + _)

    log.info(s"============== The square sum of $n is $squareSum. ==============")

    squareSum
  }
}

ServerApp.scala

import scala.concurrent.duration._
import com.typesafe.config.ConfigFactory
import akka.actor.ActorSystem
import akka.actor.Props

object ServerApp {
  def main(args: Array[String]): Unit = {
    val system = ActorSystem("ServerActorSystem")
    val actor = system.actorOf(Props[ServerActor], name = "serverActor")
  }
}

构建工程

进入目录AkkaSampleApp。运行:

sbt package

第一次运行时间会比较长。

测试应用

启动Spark服务

  • 启动spark集群master server
$SPARK_HOME/sbin/start-master.sh

[blockquote]

master服务,默认会使用7077这个端口。可以通过其日志文件查看实际的端口号。

[/blockquote]

  • 启动spark集群slave server
$SPARK_HOME/sbin/start-slave.sh spark://$(hostname):7077

启动Akka Server应用

运行:

$SPARK_HOME/bin/spark-submit --master spark://$(hostname):7077 --class ServerApp target/scala-2.11/akka-sample-app_2.11-1.0.jar

[blockquote]

如果出现java.lang.NoClassDefFoundError错误, 请参照Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境, 确保akka的包在Spark中设置好了。 注:可以使用Ctrl+C来中断这个Server应用。

[/blockquote]

启动Akka Client应用

新启动一个终端,运行:

java -classpath ./target/scala-2.11/akka-sample-app_2.11-1.0.jar:$AKKA_HOME/lib/akka/*:$SCALA_HOME/lib/* ClientApp
# or
# $SPARK_HOME/bin/spark-submit --master spark://$(hostname):7077 --class ClientApp target/scala-2.11/akka-sample-app_2.11-1.0.jar

然后:看看Server应用是否开始处理了。

总结

Server应用需要Spark的技术,因此,是在Spark环境中运行。 Clinet应用,可以是一个普通的Java应用。

下面请看

至此,我们已经写好了一个spark集群+akka+scala的应用。下一步请看: Spark集群 + Akka + Kafka + Scala 开发(4) : 开发一个Kafka + Spark的应用

参照

  • akka document
  • Elasticity (cloud computing)
  • Resilient control systems
  • akka 2.4.10 code samples
  • akka office samples
  • A simple Akka (actors) remote example
  • Shutdown Patterns in AKKA 2

相关推荐