小发猫 2019-10-08
来源:机器之心
本文约1000字,建议阅读5分钟。
本文将介绍如何利用Python生成图像并将结果做出可视化分析。
自然语言处理路线图详解,从数学基础、语言基础到模型和算法,这是你该了解的知识领域。
自然语言处理很多时候都是一门综合性的学问,它远远不止机器学习算法。相比图像或语音,文本的变化更加复杂,例如从预处理来看,NLP 就要求我们根据对数据的理解定制一种流程。而且相比图像等更偏向感知的智能,自然语言包含更高一级的智能能力,不论是承载思想、情感还是推理。
那么我们该怎样学习自然语言处理,有什么比较好的路线吗?通常而言,在数学和机器学习的基础上,我们还需要了解自然语言的规则与现象,这样才能进一步探讨该怎样处理自然语言。
本文介绍刚刚发布的一个开源项目,韩国庆熙大学本科生 Tae-Hwan Jung 总结了一套 NLP 的技术路线图。值得注意的是,Tae-Hwan Jung 此前已经开源了很多优秀的项目,包括 4.3k+ star 量的 NLP 教程。
项目地址:https://github.com/graykode/nlp-roadmap
Tae-Hwan Jung 表示,本项目面向对 NLP 感兴趣的学生,该路线图提供了学习 NLP 的思维导图及关键词信息,它覆盖了从概率/统计到 SOTA NLP 模型的素材。
如上所示为 NLP 的技术基石,最基础的当然还是数学和算法方面的知识,此外语言学和机器学习知识也必不可少。再往上主要是文本挖掘与 NLP,在作者看来,前者更偏向于常规的算法与浅层机器学习模型,后者更偏向于深度学习模型。
四大技术线路图
如下从概率和统计到深度学习方法展示了四大技术路线图,它们从基石到高层展示了完整的知识领域。
概率与统计
机器学习
文本挖掘
自然语言处理
注意:
编辑:王菁
校对:杨学俊
— 完 —
关注清华-青岛数据科学研究院官方微信公众平台“THU数据派”及姊妹号“数据派THU”获取更多讲座福利及优质内容。