虹软人脸识别3.0 - 图像数据结构介绍(C++)

范范 2019-12-13

从虹软开放了2.0版本SDK以来,由于具有免费、离线使用的特点,我们公司在人脸识别门禁应用中使用了虹软SDK,识别效果还不错,因此比较关注虹软SDK的官方动态。近期上线了ArcFace 3.0 SDK版本,确实做了比较大的更新。上一篇主要介绍了关于Android平台算法的改进,本篇将介绍一下关于Windows平台算法的更新。
  • 特征比对支持比对模型选择,有生活照比对模型人证比对模型

  • 识别率、防***效果显著提升

  • 特征值更新,升级后人脸库需重新注册

  • 人脸检测同时支持全角度及单一角度
  • 新增了一种图像数据传入方式

在V3.0版本接入过程中,发现使用新的图像数据结构还是具有一定难度的,本文将从以下几点对该图像数据结构及使用方式进行介绍

  1. SDK接口变动

  2. 图像数据结构

  3. 步长的作用

  4. OpenCV图像数据结构转换为虹软图像数据结构

一、SDK 接口变动

在接入ArcFace 3.0 SDK时,发现新增了ASFDetectFacesEx、ASFFaceFeatureExtractEx、ASFProcessEx、ASFProcessEx_IR一组接口,该组接口使用LPASF_ImageData结构体指针的方式传入图像数据,以人脸检测接口为例,具体接口比对如下:

原始接口:

MRESULT ASFDetectFaces(
        MHandle             hEngine,                            // [in] 引擎handle
        MInt32              width,                              // [in] 图片宽度
        MInt32              height,                             // [in] 图片高度
        MInt32              format,                             // [in] 颜色空间格式
        MUInt8*             imgData,                            // [in] 图片数据
        LPASF_MultiFaceInfo detectedFaces,                      // [out]检测到的人脸信息 
        ASF_DetectModel     detectModel = ASF_DETECT_MODEL_RGB  // [in] 预留字段,当前版本使用默认参数即可
        );

新增接口:

MRESULT ASFDetectFacesEx(
        MHandle             hEngine,                            // [in] 引擎handle
        LPASF_ImageData     imgData,                            // [in] 图片数据
        LPASF_MultiFaceInfo detectedFaces,                      // [out] 检测到的人脸信息
        ASF_DetectModel     detectModel = ASF_DETECT_MODEL_RGB  // [in] 预留字段,当前版本使用默认参数即可
        );

相对于原始接口,新增接口通过传入LPASF_ImageData图像数据结构指针替代原始接口传入图像数据的方式。

二、图像数据结构

新增的图像数据结构引入了步长pi32Pitch的概念。

步长定义:图像对齐后一行的字节数。

2.1 虹软图像数据结构

图像结构定义:

typedef LPASVLOFFSCREEN LPASF_ImageData;

typedef struct __tag_ASVL_OFFSCREEN
{
    MUInt32 u32PixelArrayFormat;
    MInt32  i32Width;
    MInt32  i32Height;
    MUInt8* ppu8Plane[4];
    MInt32  pi32Pitch[4];
}ASVLOFFSCREEN, *LPASVLOFFSCREEN;

虹软官方文档中对该图像数据结构的介绍:

类型变量名描述
MUInt32u32PixelArrayFormat颜色格式
MInt32i32Width图像宽度
MInt32i32Height图像高度
MUInt8*ppu8Plane图像数据
MInt32pi32Pitch图像步长

2.2 OpenCV 图像数据结构

OpenCV提供了IplImageMat两种比较常用的图像数据结构。

IplImage 图像数据结构

typedef struct _IplImage
{
    int  width;             /* Image width in pixels.                           */
    int  height;            /* Image height in pixels.                          */
    char *imageData;        /* Pointer to aligned image data.         */
    int  widthStep;         /* Size of aligned image row in bytes.    */
    ...  //其他字段这里不做展示,感兴趣的小伙伴可以查看下opencv中的头文件
}
IplImage;

Mat 图像数据结构

属性说明
cols矩阵的列数(图像宽度)
rows矩阵的行数(图像高度)
datauchar型的指针。Mat类分为了两个部分:矩阵头和指向矩阵数据部分的指针,data就是指向矩阵数据的指针。
step图像对齐之后一行的字节数

三、步长的作用

通过以上描述我们看到OpenCV和虹软算法库针对图像数据结构都引入了图像步长的概念,这里我们了解一下图像步长。

  • OpenCV 读图会做图像对齐

    如下图,一张尺寸为998x520的图像,使用OpenCV读取图像数据后,图像尺寸仍为998x520,颜色格式为BGR24,但是图像步长并不是998 * 3,而是1000 * 3,右边填充了2个像素,OpenCV对图像做了四字节对齐,虹软SDK内部算法再通过传入的图像宽度去计算步长则会出现偏差,图像数据错乱,基本不可能检测到人脸。

虹软人脸识别3.0 - 图像数据结构介绍(C++)

  • 步长的重要性
    只是差了这几个像素,为什么就导致人脸检测不到了呢?之前说到过,步长可以理解为图像对齐后一行的字节数。如果第一行像素的读取有偏差,那后续像素的读取也会受到影响。

以下是对一张大小为1000x554的图片,以不同步长进行解析的结果:

以1000为步长解析以996为步长解析
虹软人脸识别3.0 - 图像数据结构介绍(C++)虹软人脸识别3.0 - 图像数据结构介绍(C++)

可以看到,对于一张图像,如果使用了错误的步长去解析,我们可能就无法看到正确的图像内容。

结论:通过引入图像步长能够有效的避免高字节对齐的问题。

四、 OpenCV图像数据结构转换为虹软图像数据结构

当前C/C++开发者对图像进行编解码处理一般都会用到OpenCV库,这里我们介绍一下如何将OpenCV转换为虹软的图像数据结构。虹软官方文档中说明支持七种颜色格式,我们就列出七种颜色格式的转换方法。

  • OpenCV 读取过来的图像一般为BGR24格式,可使用下述方法进行图像数据结构转换。

  • 若原图为红外图像,需将图像转换为ASVL_PAF_GRAY格式(官网文档中也有示例),再使用下述方法进行转换。

IplImage 转 ASVLOFFSCREEN

int ColorSpaceConversion(MInt32 format, IplImage* img, ASVLOFFSCREEN& offscreen)
{
    switch (format)     //原始图像颜色格式
    {
    case ASVL_PAF_I420:
        offscreen.u32PixelArrayFormat = (unsigned int)format;
        offscreen.i32Width = img->width;
        offscreen.i32Height = img->height;
        offscreen.pi32Pitch[0] = img->widthStep;
        offscreen.pi32Pitch[1] = offscreen.pi32Pitch[0] >> 1;
        offscreen.pi32Pitch[2] = offscreen.pi32Pitch[0] >> 1;
        offscreen.ppu8Plane[0] = (MUInt8*)img->imageData;
        offscreen.ppu8Plane[1] = offscreen.ppu8Plane[0] + offscreen.i32Height * offscreen.pi32Pitch[0];
        offscreen.ppu8Plane[2] = offscreen.ppu8Plane[0] + offscreen.i32Height * offscreen.pi32Pitch[0] * 5 / 4;
        break;
    case ASVL_PAF_YUYV:
        offscreen.u32PixelArrayFormat = (unsigned int)format;
        offscreen.i32Width = img->width;
        offscreen.i32Height = img->height;
        offscreen.pi32Pitch[0] = img->widthStep;
        offscreen.ppu8Plane[0] = (MUInt8*)img->imageData;
        break;
    case ASVL_PAF_NV12:
        offscreen.u32PixelArrayFormat = (unsigned int)format;
        offscreen.i32Width = img->width;
        offscreen.i32Height = img->height;
        offscreen.pi32Pitch[0] = img->widthStep;
        offscreen.pi32Pitch[1] = offscreen.pi32Pitch[0];
        offscreen.ppu8Plane[0] = (MUInt8*)img->imageData;
        offscreen.ppu8Plane[1] = offscreen.ppu8Plane[0] + offscreen.pi32Pitch[0] * offscreen.i32Height;
        break;
    case ASVL_PAF_NV21:
        offscreen.u32PixelArrayFormat = (unsigned int)format;
        offscreen.i32Width = img->width;
        offscreen.i32Height = img->height;
        offscreen.pi32Pitch[0] = img->widthStep;
        offscreen.pi32Pitch[1] = offscreen.pi32Pitch[0];
        offscreen.ppu8Plane[0] = (MUInt8*)img->imageData;
        offscreen.ppu8Plane[1] = offscreen.ppu8Plane[0] + offscreen.pi32Pitch[0] * offscreen.i32Height;
        break;
    case ASVL_PAF_RGB24_B8G8R8:
        offscreen.u32PixelArrayFormat = (unsigned int)format;
        offscreen.i32Width = img->width;
        offscreen.i32Height = img->height;
        offscreen.pi32Pitch[0] = img->widthStep;
        offscreen.ppu8Plane[0] = (MUInt8*)img->imageData;
        break;
    case ASVL_PAF_DEPTH_U16:
        offscreen.u32PixelArrayFormat = (unsigned int)format;
        offscreen.i32Width = img->width;
        offscreen.i32Height = img->height;
        offscreen.pi32Pitch[0] = img->widthStep;
        offscreen.ppu8Plane[0] = (MUInt8*)img->imageData;
        break;
    case ASVL_PAF_GRAY:
        offscreen.u32PixelArrayFormat = (unsigned int)format;
        offscreen.i32Width = img->width;
        offscreen.i32Height = img->height;
        offscreen.pi32Pitch[0] = img->widthStep;
        offscreen.ppu8Plane[0] = (MUInt8*)img->imageData;
        break;
    default:
        return 0;
    }
    return 1;
}

Mat 转 ASVLOFFSCREEN

int ColorSpaceConversion(MInt32 format, cv::Mat img, ASVLOFFSCREEN& offscreen)
{
    switch (format)   //原始图像颜色格式
    {
    case ASVL_PAF_I420:
        offscreen.u32PixelArrayFormat = (unsigned int)format;
        offscreen.i32Width = img.cols;
        offscreen.i32Height = img.rows;
        offscreen.pi32Pitch[0] = img.step;
        offscreen.pi32Pitch[1] = offscreen.pi32Pitch[0] >> 1;
        offscreen.pi32Pitch[2] = offscreen.pi32Pitch[0] >> 1;
        offscreen.ppu8Plane[0] = img.data;
        offscreen.ppu8Plane[1] = offscreen.ppu8Plane[0] + offscreen.i32Height * offscreen.pi32Pitch[0];
        offscreen.ppu8Plane[2] = offscreen.ppu8Plane[0] + offscreen.i32Height * offscreen.pi32Pitch[0] * 5 / 4;
        break;
    case ASVL_PAF_YUYV:
        offscreen.u32PixelArrayFormat = (unsigned int)format;
        offscreen.i32Width = img.cols;
        offscreen.i32Height = img.rows;
        offscreen.pi32Pitch[0] = img.step;
        offscreen.ppu8Plane[0] = img.data;;
        break;
    case ASVL_PAF_NV12:
        offscreen.u32PixelArrayFormat = (unsigned int)format;
        offscreen.i32Width = img.cols;
        offscreen.i32Height = img.rows;
        offscreen.pi32Pitch[0] = img.step;
        offscreen.pi32Pitch[1] = offscreen.pi32Pitch[0];
        offscreen.ppu8Plane[0] = img.data;
        offscreen.ppu8Plane[1] = offscreen.ppu8Plane[0] + offscreen.pi32Pitch[0] * offscreen.i32Height;
        break;
    case ASVL_PAF_NV21:
        offscreen.u32PixelArrayFormat = (unsigned int)format;
        offscreen.i32Width = img.cols;
        offscreen.i32Height = img.rows;
        offscreen.pi32Pitch[0] = img.step;
        offscreen.pi32Pitch[1] = offscreen.pi32Pitch[0];
        offscreen.ppu8Plane[0] = img.data;
        offscreen.ppu8Plane[1] = offscreen.ppu8Plane[0] + offscreen.pi32Pitch[0] * offscreen.i32Height;
        break;
    case ASVL_PAF_RGB24_B8G8R8:
        offscreen.u32PixelArrayFormat = (unsigned int)format;
        offscreen.i32Width = img.cols;
        offscreen.i32Height = img.rows;
        offscreen.pi32Pitch[0] = img.step;
        offscreen.ppu8Plane[0] = img.data;
        break;
    case ASVL_PAF_DEPTH_U16:
        offscreen.u32PixelArrayFormat = (unsigned int)format;
        offscreen.i32Width = img.cols;
        offscreen.i32Height = img.rows;
        offscreen.pi32Pitch[0] = img.step;
        offscreen.ppu8Plane[0] = img.data;
        break;
    case ASVL_PAF_GRAY:
        offscreen.u32PixelArrayFormat = (unsigned int)format;
        offscreen.i32Width = img.cols;
        offscreen.i32Height = img.rows;
        offscreen.pi32Pitch[0] = img.step;
        offscreen.ppu8Plane[0] = img.data;
        break;
    default:
        return 0;
    }
    return 1;
}

举例说明

这里引用了虹软官网文档中的示例,但使用了上述的图像格式转换方法。

//opencv方式裁剪图片
void CutIplImage(IplImage* src, IplImage* dst, int x, int y)
{
    CvSize size = cvSize(dst->width, dst->height);//区域大小
    cvSetImageROI(src, cvRect(x, y, size.width, size.height));//设置源图像ROI
    cvCopy(src, dst); //复制图像
    cvResetImageROI(src);//源图像用完后,清空ROI
}
IplImage* originalImg = cvLoadImage("1280 x 720.jpg");  

//图像裁剪,宽度做四字节对齐,若能保证图像是四字节对齐这步可以不用做
IplImage* img = cvCreateImage(cvSize(originalImg->width - originalImg->width % 4, originalImg->height), IPL_DEPTH_8U, originalImg->nChannels);
CutIplImage(originalImg, img, 0, 0);

//图像数据以结构体形式传入,对更高精度的图像兼容性更好
ASF_MultiFaceInfo detectedFaces = { 0 };
ASVLOFFSCREEN offscreen = { 0 };
//IplImage 转 ASVLOFFSCREEN
ColorSpaceConversion(ASVL_PAF_RGB24_B8G8R8, img, offscreen);
if (img)
{
    MRESULT res = ASFDetectFacesEx(handle, &offscreen, &detectedFaces);
    if (MOK != res)
    {
        printf("ASFDetectFacesEx failed: %d\n", res);
    }
    else
    {
        // 打印人脸检测结果
        for (int i = 0; i < detectedFaces.faceNum; i++)
        {
            printf("Face Id: %d\n", detectedFaces.faceID[i]);
            printf("Face Orient: %d\n", detectedFaces.faceOrient[i]);
            printf("Face Rect: (%d %d %d %d)\n", 
                detectedFaces.faceRect[i].left, detectedFaces.faceRect[i].top, 
                detectedFaces.faceRect[i].right, detectedFaces.faceRect[i].bottom);
        }
    }

    //释放图像内存,这里只是做人脸检测,若还需要做特征提取等处理,图像数据没必要释放这么早
    cvReleaseImage(&img);
}
cvReleaseImage(&originalImg);

个人总结 :通过研究发现V3.0 版本SDK使用老接口也是可以正常使用的,新接口对更高字节对齐的图像兼容性更好。

Demo可在虹软人脸识别开放平台下载

相关推荐