sxyhetao 2020-01-14
使用XGBoost实现多分类预测的实践代码
import pandas as pd
import numpy as np
import xgboost as xgb
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import KFold
import matplotlib.pyplot as plt
import seaborn as sns
import gc
## load data
train_data = pd.read_csv(‘../../data/train.csv‘)
test_data = pd.read_csv(‘../../data/test.csv‘)
num_round = 1000
## category feature one_hot
test_data[‘label‘] = -1
data = pd.concat([train_data, test_data])
cate_feature = [‘gender‘, ‘cell_province‘, ‘id_province‘, ‘id_city‘, ‘rate‘, ‘term‘]
for item in cate_feature:
data[item] = LabelEncoder().fit_transform(data[item])
item_dummies = pd.get_dummies(data[item])
item_dummies.columns = [item + str(i + 1) for i in range(item_dummies.shape[1])]
data = pd.concat([data, item_dummies], axis=1)
data.drop(cate_feature,axis=1,inplace=True)
train = data[data[‘label‘] != -1]
test = data[data[‘label‘] == -1]
##Clean up the memory
del data, train_data, test_data
gc.collect()
## get train feature
del_feature = [‘auditing_date‘, ‘due_date‘, ‘label‘]
features = [i for i in train.columns if i not in del_feature]
## Convert the label to two categories
train_x = train[features]
train_y = train[‘label‘].astype(int).values
test = test[features]
params = {
‘booster‘: ‘gbtree‘,
‘objective‘: ‘multi:softmax‘,
# ‘objective‘: ‘multi:softprob‘, #Multiclassification probability
‘num_class‘: 33,
‘eval_metric‘: ‘mlogloss‘,
‘gamma‘: 0.1,
‘max_depth‘: 8,
‘alpha‘: 0,
‘lambda‘: 0,
‘subsample‘: 0.7,
‘colsample_bytree‘: 0.5,
‘min_child_weight‘: 3,
‘silent‘: 0,
‘eta‘: 0.03,
‘nthread‘: -1,
‘missing‘: 1,
‘seed‘: 2019,
}
folds = KFold(n_splits=5, shuffle=True, random_state=2019)
prob_oof = np.zeros(train_x.shape[0])
test_pred_prob = np.zeros(test.shape[0])
## train and predict
feature_importance_df = pd.DataFrame()
for fold_, (trn_idx, val_idx) in enumerate(folds.split(train)):
print("fold {}".format(fold_ + 1))
trn_data = xgb.DMatrix(train_x.iloc[trn_idx], label=train_y[trn_idx])
val_data = xgb.DMatrix(train_x.iloc[val_idx], label=train_y[val_idx])
watchlist = [(trn_data, ‘train‘), (val_data, ‘valid‘)]
clf = xgb.train(params, trn_data, num_round, watchlist, verbose_eval=20, early_stopping_rounds=50)
prob_oof[val_idx] = clf.predict(xgb.DMatrix(train_x.iloc[val_idx]), ntree_limit=clf.best_ntree_limit)
fold_importance_df = pd.DataFrame()
fold_importance_df["Feature"] = clf.get_fscore().keys()
fold_importance_df["importance"] = clf.get_fscore().values()
fold_importance_df["fold"] = fold_ + 1
feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)
test_pred_prob += clf.predict(xgb.DMatrix(test), ntree_limit=clf.best_ntree_limit) / folds.n_splits
result = np.argmax(test_pred_prob, axis=1)
## plot feature importance
cols = (feature_importance_df[["Feature", "importance"]].groupby("Feature").mean().sort_values(by="importance", ascending=False).index)
best_features = feature_importance_df.loc[feature_importance_df.Feature.isin(cols)].sort_values(by=‘importance‘,ascending=False)
plt.figure(figsize=(8, 15))
sns.barplot(y="Feature",
x="importance",
data=best_features.sort_values(by="importance", ascending=False))
plt.title(‘LightGBM Features (avg over folds)‘)
plt.tight_layout()
plt.savefig(‘../../result/xgb_importances.png‘)参考代码链接为:https://github.com/ikkyu-wen/data_mining_models,这里面的xgboost实现多分类