Python爬虫案例演示:Python多线程、多进程、协程

oXiaoChong 2020-04-07

很多时候我们写了一个爬虫,实现了需求后会发现了很多值得改进的地方,其中很重要的一点就是爬取速度。本文 就通过代码讲解如何使用 多进程、多线程、协程 来提升爬取速度。注意:我们不深入介绍理论和原理,一切都在代码中。

二、同步

Python爬虫案例演示:Python多线程、多进程、协程
Python爬虫案例演示:Python多线程、多进程、协程

首先我们写一个简化的爬虫,对各个功能细分,有意识进行函数式编程。下面代码的目的是访问300次百度页面并返回状态码,其中 parse_1 函数可以设定循环次数,每次循环将当前循环数(从0开始)和url传入 parse_2 函数。

import requestsdef parse_1():    url = ‘https://www.baidu.com‘for i in range(300):        parse_2(url)def parse_2(url):    response = requests.get(url)    print(response.status_code)if __name__ == ‘__main__‘:    parse_1()

性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待

示例代码就是典型的串行逻辑, parse_1 将url和循环数传递给 parse_2 , parse_2 请求并返回状态码后 parse_1 继续迭代一次,重复之前步骤

三、多线程

Python爬虫案例演示:Python多线程、多进程、协程

因为CPU在执行程序时每个时间刻度上只会存在一个线程,因此多线程实际上提高了进程的使用率从而提高了CPU的使用率

实现多线程的库有很多,这里用 concurrent.futures 中的 ThreadPoolExecutor 来演示。介绍 ThreadPoolExecutor 库是因为它相比其他库代码更简洁

为了方便说明问题,下面代码中如果是新增加的部分,代码行前会加上 > 符号便于观察说明问题,实际运行需要去掉

import requests> from concurrent.futures import ThreadPoolExecutordef parse_1():    url = ‘https://www.baidu.com‘    # 建立线程池    > pool = ThreadPoolExecutor(6)    for i in range(300):        > pool.submit(parse_2, url)    > pool.shutdown(wait=True)def parse_2(url):    response = requests.get(url)    print(response.status_code)if __name__ == ‘__main__‘:    parse_1()

跟同步相对的就是 异步 。异步就是彼此独立,在等待某事件的过程中继续做自己的事,不需要等待这一事件完成后再工作。线程就是实现异步的一个方式,也就是说多线程是异步处理异步就意味着不知道处理结果,有时候我们需要了解处理结果,就可以采用 回调

import requestsfrom concurrent.futures import ThreadPoolExecutor# 增加回调函数> def callback(future):    > print(future.result())def parse_1():    url = ‘https://www.baidu.com‘    pool = ThreadPoolExecutor(6)    for i in range(300):        > results = pool.submit(parse_2, url)        # 回调的关键步骤        > results.add_done_callback(callback)    pool.shutdown(wait=True)def parse_2(url):    response = requests.get(url)    print(response.status_code)if __name__ == ‘__main__‘:    parse_1()

P ython实现多线程有一个无数人诟病的 GIL(全局解释器锁) ,但多线程对于爬取网页这种多数属于IO密集型的任务依旧很合适。

四、多进程

Python爬虫案例演示:Python多线程、多进程、协程

多进程用两个方法实现: ProcessPoolExecutor 和 multiprocessing

1. ProcessPoolExecutor

和实现多线程的 ThreadPoolExecutor 类似

import requests> from concurrent.futures import ProcessPoolExecutordef parse_1():    url = ‘https://www.baidu.com‘    # 建立线程池    > pool = ProcessPoolExecutor(6)    for i in range(300):        > pool.submit(parse_2, url)    > pool.shutdown(wait=True)def parse_2(url):    response = requests.get(url)    print(response.status_code)if __name__ == ‘__main__‘:    parse_1()

可以看到改动了两次类名,代码依旧很简洁,同理也可以添加 回调 函数

import requestsfrom concurrent.futures import ProcessPoolExecutor> def callback(future):    > print(future.result())def parse_1():    url = ‘https://www.baidu.com‘    pool = ProcessPoolExecutor(6)for i in range(300):        > results = pool.submit(parse_2, url)        > results.add_done_callback(callback)    pool.shutdown(wait=True)def parse_2(url):    response = requests.get(url)    print(response.status_code)if __name__ == ‘__main__‘:    parse_1()

2. multiprocessing

直接看代码,一切都在注释中。

import requests> from multiprocessing import Pooldef parse_1():    url = ‘https://www.baidu.com‘    # 建池    > pool = Pool(processes=5)    # 存放结果    > res_lst = []for i in range(300):        # 把任务加入池中        > res = pool.apply_async(func=parse_2, args=(url,))        # 获取完成的结果(需要取出)        > res_lst.append(res)    # 存放最终结果(也可以直接存储或者print)    > good_res_lst = []    > for res in res_lst:        # 利用get获取处理后的结果        > good_res = res.get()        # 判断结果的好坏        > if good_res:            > good_res_lst.append(good_res)    # 关闭和等待完成    > pool.close()    > pool.join()def parse_2(url):    response = requests.get(url)print(response.status_code)if __name__ == ‘__main__‘:    parse_1()

可以看到 multiprocessing 库的代码稍繁琐,但支持更多的拓展。 多进程和多线程确实能够达到加速的目的,但如果遇到IO阻塞会出现线程或者进程的浪费 ,因此有一个更好的方法……

五、异步非阻塞

Python爬虫案例演示:Python多线程、多进程、协程

协程+回调 配合动态协作就可以达到异步非阻塞的目的,本质只用了一个线程,所以很大程度利用了资源

实现异步非阻塞经典是利用 asyncio 库+ yield ,为了方便利用逐渐出现了更上层的封装 aiohttp ,要想更好的理解异步非阻塞最好还是深入了解 asyncio 库。而 gevent 是一个非常方便实现协程的库

import requests> from gevent import monkey# 猴子补丁是协作运行的灵魂> monkey.patch_all()> import geventdef parse_1():    url = ‘https://www.baidu.com‘    # 建立任务列表    > tasks_list = []    for i in range(300):        > task = gevent.spawn(parse_2, url)        > tasks_list.append(task)    > gevent.joinall(tasks_list)def parse_2(url):    response = requests.get(url)    print(response.status_code)if __name__ == ‘__main__‘:    parse_1()

gevent能很大提速,也引入了新的问题: 如果我们不想速度太快给服务器造成太大负担怎么办? 如果是多进程多线程的建池方法,可以控制池内数量。如果用gevent想要控制速度也有一个不错的方法: 建立队列。 gevent中也提供了 Quene类 ,下面代码改动较大

import requestsfrom gevent import monkeymonkey.patch_all()import gevent> from gevent.queue import Queuedef parse_1():    url = ‘https://www.baidu.com‘    tasks_list = []    # 实例化队列    > quene = Queue()    for i in range(300):        # 全部url压入队列        > quene.put_nowait(url)    # 两路队列    > for _ in range(2):        > task = gevent.spawn(parse_2)        > tasks_list.append(task)    gevent.joinall(tasks_list)# 不需要传入参数,都在队列中> def parse_2():    # 循环判断队列是否为空    > while not quene.empty():        # 弹出队列        > url = quene.get_nowait()        response = requests.get(url)        # 判断队列状态        > print(quene.qsize(), response.status_code)if __name__ == ‘__main__‘:    parse_1()

结束语

Python爬虫案例演示:Python多线程、多进程、协程

以上就是几种常用的加速方法。如果对代码测试感兴趣可以利用time模块判断运行时间。爬虫的加速是重要技能,但适当控制速度也是爬虫工作者的良好习惯,不要给服务器太大压力,拜拜~

相关推荐