xiaobaichen 2019-11-05
针对 select 系统调用的三个不足,poll 解决的是第一个、最多 1024 个 FD 限制的问题。
其实现思路是:
1. 不再使用位图来传递事件和结果,而是使用 pollfd 。 结构体数组来传递。
2. 在内部实现时,以 poll_list 链表的形式来分批次保存 pollfd 。不像 select 那样一次申请完整的一大块内存。
3. 通过从进程的信号量里获取能打开的最大文件数量,解决 1024 个限制的问题。
// 源码位置:include/uapi/asm-generic/poll.h
struct pollfd {
int fd; // FD
short events; // 输入的敢兴趣事件
short revents; // 输出的结果
};
// 源码位置:fs/select.c
struct poll_list {
struct poll_list *next;
// entries 指向的数组里 pollfd 的数量
int len;
// 指向 pollfd 数组的指针
struct pollfd entries[0];
};
pollfd 结构体用来传递单个FD的输入事件、输出结果。
poll_list 是一个链表,其节点指向 pollfd 结构体的数组,这个数组要么是在栈上预分配、要么是按内存页分配(保持页对齐)。
源码位置:fs/select.c
SYSCALL_DEFINE3(poll, struct pollfd __user *, ufds, unsigned int, nfds,
int, timeout_msecs)
{
struct timespec64 end_time, *to = NULL;
int ret;
if (timeout_msecs >= 0) {
to = &end_time;
poll_select_set_timeout(to, timeout_msecs / MSEC_PER_SEC,
NSEC_PER_MSEC * (timeout_msecs % MSEC_PER_SEC));
}
ret = do_sys_poll(ufds, nfds, to);
if (ret == -EINTR) {
struct restart_block *restart_block;
restart_block = &current->restart_block;
restart_block->fn = do_restart_poll;
restart_block->poll.ufds = ufds;
restart_block->poll.nfds = nfds;
if (timeout_msecs >= 0) {
restart_block->poll.tv_sec = end_time.tv_sec;
restart_block->poll.tv_nsec = end_time.tv_nsec;
restart_block->poll.has_timeout = 1;
} else
restart_block->poll.has_timeout = 0;
ret = -ERESTART_RESTARTBLOCK;
}
return ret;
}
static int do_sys_poll(struct pollfd __user *ufds, unsigned int nfds,
struct timespec64 *end_time)
{
struct poll_wqueues table;
int err = -EFAULT, fdcount, len, size;
/* Allocate small arguments on the stack to save memory and be
faster - use long to make sure the buffer is aligned properly
on 64 bit archs to avoid unaligned access */
// 创建 256 个字节大小的数组
long stack_pps[POLL_STACK_ALLOC/sizeof(long)];
struct poll_list *const head = (struct poll_list *)stack_pps;
struct poll_list *walk = head;
unsigned long todo = nfds;
// 如果超过能打开的最大文件数则返回
// 这个 rlimit 通过判等进程信息里的信号量来实现的
// 因此修改文件能打开的最大文件数不需要重新编译,可以实时修改
if (nfds > rlimit(RLIMIT_NOFILE))
return -EINVAL;
// N_STACK_PPS 是用于计算 stack_pps 里能存放多少个 pollfd 结构体
len = min_t(unsigned int, nfds, N_STACK_PPS);
// 从用户空间拷贝 pollfd 数组到内核空间
// 分批拷贝,不同批次之间用 poll_list 链表维护起来
for (;;) {
walk->next = NULL;
walk->len = len;
if (!len)
break;
if (copy_from_user(walk->entries, ufds + nfds-todo,
sizeof(struct pollfd) * walk->len))
goto out_fds;
todo -= walk->len;
if (!todo)
break;
// POLLFD_PER_PAGE 是一个页面能存放多少个 pollfd 结构体
len = min(todo, POLLFD_PER_PAGE);
size = sizeof(struct poll_list) + sizeof(struct pollfd) * len;
walk = walk->next = kmalloc(size, GFP_KERNEL);
if (!walk) {
err = -ENOMEM;
goto out_fds;
}
}
// 初始化 poll_wqueues,设置队列处理函数等
poll_initwait(&table);
// 主逻辑:调用目标文件的 poll 函数
fdcount = do_poll(head, &table, end_time);
// 删除主逻辑里添加到目标文件的等待节点
poll_freewait(&table);
// 把结果拷贝到用户空间
for (walk = head; walk; walk = walk->next) {
struct pollfd *fds = walk->entries;
int j;
for (j = 0; j < walk->len; j++, ufds++)
if (__put_user(fds[j].revents, &ufds->revents))
goto out_fds;
}
err = fdcount;
out_fds:
// 释放申请的内存
walk = head->next;
while (walk) {
struct poll_list *pos = walk;
walk = walk->next;
kfree(pos);
}
return err;
}
static int do_poll(struct poll_list *list, struct poll_wqueues *wait,
struct timespec64 *end_time)
{
poll_table* pt = &wait->pt;
ktime_t expire, *to = NULL;
int timed_out = 0, count = 0;
u64 slack = 0;
unsigned int busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0;
unsigned long busy_start = 0;
/* Optimise the no-wait case */
if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
pt->_qproc = NULL;
timed_out = 1;
}
if (end_time && !timed_out)
slack = select_estimate_accuracy(end_time);
for (;;) {
struct poll_list *walk;
bool can_busy_loop = false;
// 遍历链表
for (walk = list; walk != NULL; walk = walk->next) {
struct pollfd * pfd, * pfd_end;
pfd = walk->entries;
pfd_end = pfd + walk->len;
// 遍历节点里的数组
for (; pfd != pfd_end; pfd++) {
/*
* Fish for events. If we found one, record it
* and kill poll_table->_qproc, so we don't
* needlessly register any other waiters after
* this. They'll get immediately deregistered
* when we break out and return.
*/
// 处理单个 pollfd
if (do_pollfd(pfd, pt, &can_busy_loop,
busy_flag)) {
// 有事件发生了
count++;
// 后续的文件即使没有事件发生也不需要等待了。
pt->_qproc = NULL;
/* found something, stop busy polling */
busy_flag = 0;
can_busy_loop = false;
}
}
}
// 注意:上面的遍历循环里,并没有像 select 那样,在小批次poll后进行睡眠。
/*
* All waiters have already been registered, so don't provide
* a poll_table->_qproc to them on the next loop iteration.
*/
pt->_qproc = NULL;
if (!count) {
count = wait->error;
if (signal_pending(current))
count = -EINTR;
}
if (count || timed_out)
break;
/* only if found POLL_BUSY_LOOP sockets && not out of time */
if (can_busy_loop && !need_resched()) {
if (!busy_start) {
busy_start = busy_loop_current_time();
continue;
}
if (!busy_loop_timeout(busy_start))
continue;
}
busy_flag = 0;
/*
* If this is the first loop and we have a timeout
* given, then we convert to ktime_t and set the to
* pointer to the expiry value.
*/
if (end_time && !to) {
expire = timespec64_to_ktime(*end_time);
to = &expire;
}
// 睡眠等待直至超时或被唤醒
if (!poll_schedule_timeout(wait, TASK_INTERRUPTIBLE, to, slack))
timed_out = 1;
}
return count;
}
static inline unsigned int do_pollfd(struct pollfd *pollfd, poll_table *pwait,
bool *can_busy_poll,
unsigned int busy_flag)
{
unsigned int mask;
int fd;
mask = 0;
fd = pollfd->fd;
if (fd >= 0) {
struct fd f = fdget(fd);
mask = POLLNVAL;
if (f.file) {
mask = DEFAULT_POLLMASK;
if (f.file->f_op->poll) {
pwait->_key = pollfd->events|POLLERR|POLLHUP;
pwait->_key |= busy_flag;
mask = f.file->f_op->poll(f.file, pwait);
if (mask & busy_flag)
*can_busy_poll = true;
}
/* Mask out unneeded events. */
// 清除不需要的事件
mask &= pollfd->events | POLLERR | POLLHUP;
fdput(f);
}
}
pollfd->revents = mask;
return mask;
由于采用 pollfd 结构体来传递文件的事件,do_poll 遍历所有文件时的逻辑更清晰些、有层次,对某个 pollfd 的处理提取成 do_pollfd 函数。
poll 系统调用的等待与唤醒逻辑与 select 系统调用是一样的,调用的代码是一样的。