zagnix 2019-06-29
前面我有文章介绍了synchronized的基本原理,这篇文章我会从jvm源码分析synchronized的实现逻辑,希望让大家有一个更加深度的认识
由于synchronized的实现是在jvm层面,所以我们如果要看它的源码,需要从字节码入手。这段代码演示了synchronized作为实例锁的两种用法,我们观察一下这段代码生成的字节码
public class App { public synchronized void test1(){ } public void test2(){ synchronized (this){ } } public static void main( String[] args ){ System.out.println( "Hello World!" ); } }
进入classpath目录下找到App.class文件, 在cmd中输入 javap -v App.class查看字节码
public synchronized void test1(); descriptor: ()V flags: ACC_PUBLIC, ACC_SYNCHRONIZED Code: stack=0, locals=1, args_size=1 0: return LineNumberTable: line 10: 0 LocalVariableTable: Start Length Slot Name Signature 0 1 0 this Lcom/gupaoedu/openclass/App; public void test2(); descriptor: ()V flags: ACC_PUBLIC Code: stack=2, locals=3, args_size=1 0: aload_0 1: dup 2: astore_1 3: monitorenter //监视器进入,获取锁 4: aload_1 5: monitorexit //监视器退出,释放锁 6: goto 14 9: astore_2 10: aload_1 11: monitorexit 12: aload_2 13: athrow 14: return
通过字节码我们可以发现,修饰在方法层面的同步关键字,会多一个 ACC_SYNCHRONIZED的flag;修饰在代码块层面的同步块会多一个 monitorenter和 monitorexit关键字。无论采用哪一种方式,本质上都是对一个对象的监视器(monitor)进行获取,而这个获取的过程是排他的,也就是同一个时刻只能有一个线程获得同步块对象的监视器。
在 synchronized的原理分析这篇文章中,有提到对象监视器。
synchronized关键字经过编译之后,会在同步块的前后分别形成monitorenter和monitorexit这两个字节码指令。当我们的JVM把字节码加载到内存的时候,会对这两个指令进行解析。这两个字节码都需要一个Object类型的参数来指明要锁定和解锁的对象。如果Java程序中的synchronized明确指定了对象参数,那么这个对象就是加锁和解锁的对象;如果没有明确指定,那就根据synchronized修饰的是实例方法还是类方法,获取对应的对象实例或Class对象来作为锁对象
在分析源代码之前需要了解oop, oopDesc, markOop等相关概念,在Synchronized的原理分析这篇文章中,我们讲到了synchronized的同步锁实际上是存储在对象头中,这个对象头是一个Java对象在内存中的布局的一部分。Java中的每一个Object在JVM内部都会有一个native的C++对象oop/oopDesc与之对应。在hotspot源码 oop.hpp中oopDesc的定义如下
class oopDesc { friend class VMStructs; private: volatile markOop _mark; union _metadata { Klass* _klass; narrowKlass _compressed_klass; } _metadata;
其中 markOop就是我们所说的Mark Word,用于存储锁的标识。
hotspot源码 markOop.hpp文件代码片段
class markOopDesc: public oopDesc { private: // Conversion uintptr_t value() const { return (uintptr_t) this; } public: // Constants enum { age_bits = 4, lock_bits = 2, biased_lock_bits = 1, max_hash_bits = BitsPerWord - age_bits - lock_bits - biased_lock_bits, hash_bits = max_hash_bits > 31 ? 31 : max_hash_bits, cms_bits = LP64_ONLY(1) NOT_LP64(0), epoch_bits = 2 }; ... }
markOopDesc继承自oopDesc,并且扩展了自己的monitor方法,这个方法返回一个ObjectMonitor指针对象,在hotspot虚拟机中,采用ObjectMonitor类来实现monitor
bool has_monitor() const { return ((value() & monitor_value) != 0); } ObjectMonitor* monitor() const { assert(has_monitor(), "check"); // Use xor instead of &~ to provide one extra tag-bit check. return (ObjectMonitor*) (value() ^ monitor_value); }
在 ObjectMonitor.hpp中,可以看到ObjectMonitor的定义
class ObjectMonitor { ... ObjectMonitor() { _header = NULL; //markOop对象头 _count = 0; _waiters = 0, //等待线程数 _recursions = 0; //重入次数 _object = NULL; _owner = NULL; //获得ObjectMonitor对象的线程 _WaitSet = NULL; //处于wait状态的线程,会被加入到waitSet _WaitSetLock = 0 ; _Responsible = NULL ; _succ = NULL ; _cxq = NULL ; FreeNext = NULL ; _EntryList = NULL ; //处于等待锁BLOCKED状态的线程 _SpinFreq = 0 ; _SpinClock = 0 ; OwnerIsThread = 0 ; _previous_owner_tid = 0; //监视器前一个拥有线程的ID } ...
简单总结一下,同步块的实现使用 monitorenter和 monitorexit指令,而同步方法是依靠方法修饰符上的flag ACC_SYNCHRONIZED来完成。其本质是对一个对象监视器(monitor)进行获取,这个获取过程是排他的,也就是同一个时刻只能有一个线程获得由synchronized所保护对象的监视器。所谓的监视器,实际上可以理解为一个同步工具,它是由Java对象进行描述的。在Hotspot中,是通过ObjectMonitor来实现,每个对象中都会内置一个ObjectMonitor对象
从 monitorenter和 monitorexit这两个指令来开始阅读源码,JVM将字节码加载到内存以后,会对这两个指令进行解释执行, monitorenter, monitorexit的指令解析是通过 InterpreterRuntime.cpp中的两个方法实现
InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem) InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem) //JavaThread 当前获取锁的线程 //BasicObjectLock 基础对象锁
我们基于monitorenter为入口,沿着偏向锁->轻量级锁->重量级锁的路径来分析synchronized的实现过程
IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem)) #ifdef ASSERT thread->last_frame().interpreter_frame_verify_monitor(elem); #endif ... if (UseBiasedLocking) { // Retry fast entry if bias is revoked to avoid unnecessary inflation ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK); } else { ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK); } ... #ifdef ASSERT thread->last_frame().interpreter_frame_verify_monitor(elem); #endif IRT_END
UseBiasedLocking是在JVM启动的时候,是否启动偏向锁的标识
ObjectSynchronizer::fast_enter的实现在 synchronizer.cpp文件中,代码如下
void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) { if (UseBiasedLocking) { //判断是否开启了偏向锁 if (!SafepointSynchronize::is_at_safepoint()) { //如果不处于全局安全点 //通过`revoke_and_rebias`这个函数尝试获取偏向锁 BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD); if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {//如果是撤销与重偏向直接返回 return; } } else {//如果在安全点,撤销偏向锁 assert(!attempt_rebias, "can not rebias toward VM thread"); BiasedLocking::revoke_at_safepoint(obj); } assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now"); } slow_enter (obj, lock, THREAD) ; }
fast_enter方法的主要流程做一个简单的解释
BiasedLocking::revoke_and_rebias 是用来获取当前偏向锁的状态(可能是偏向锁撤销后重新偏向)。这个方法的逻辑在 biasedLocking.cpp中
BiasedLocking::Condition BiasedLocking::revoke_and_rebias(Handle obj, bool attempt_rebias, TRAPS) { assert(!SafepointSynchronize::is_at_safepoint(), "must not be called while at safepoint"); markOop mark = obj->mark(); //获取锁对象的对象头 //判断mark是否为可偏向状态,即mark的偏向锁标志位为1,锁标志位为 01,线程id为null if (mark->is_biased_anonymously() && !attempt_rebias) { //这个分支是进行对象的hashCode计算时会进入,在一个非全局安全点进行偏向锁撤销 markOop biased_value = mark; //创建一个非偏向的markword markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age()); //Atomic:cmpxchg_ptr是CAS操作,通过cas重新设置偏向锁状态 markOop res_mark = (markOop) Atomic::cmpxchg_ptr(unbiased_prototype, obj->mark_addr(), mark); if (res_mark == biased_value) {//如果CAS成功,返回偏向锁撤销状态 return BIAS_REVOKED; } } else if (mark->has_bias_pattern()) {//如果锁对象为可偏向状态(biased_lock:1, lock:01,不管线程id是否为空),尝试重新偏向 Klass* k = obj->klass(); markOop prototype_header = k->prototype_header(); //如果已经有线程对锁对象进行了全局锁定,则取消偏向锁操作 if (!prototype_header->has_bias_pattern()) { markOop biased_value = mark; //CAS 更新对象头markword为非偏向锁 markOop res_mark = (markOop) Atomic::cmpxchg_ptr(prototype_header, obj->mark_addr(), mark); assert(!(*(obj->mark_addr()))->has_bias_pattern(), "even if we raced, should still be revoked"); return BIAS_REVOKED; //返回偏向锁撤销状态 } else if (prototype_header->bias_epoch() != mark->bias_epoch()) { //如果偏向锁过期,则进入当前分支 if (attempt_rebias) {//如果允许尝试获取偏向锁 assert(THREAD->is_Java_thread(), ""); markOop biased_value = mark; markOop rebiased_prototype = markOopDesc::encode((JavaThread*) THREAD, mark->age(), prototype_header->bias_epoch()); //通过CAS 操作, 将本线程的 ThreadID 、时间错、分代年龄尝试写入对象头中 markOop res_mark = (markOop) Atomic::cmpxchg_ptr(rebiased_prototype, obj->mark_addr(), mark); if (res_mark == biased_value) { //CAS成功,则返回撤销和重新偏向状态 return BIAS_REVOKED_AND_REBIASED; } } else {//不尝试获取偏向锁,则取消偏向锁 //通过CAS操作更新分代年龄 markOop biased_value = mark; markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age()); markOop res_mark = (markOop) Atomic::cmpxchg_ptr(unbiased_prototype, obj->mark_addr(), mark); if (res_mark == biased_value) { //如果CAS操作成功,返回偏向锁撤销状态 return BIAS_REVOKED; } } } } ...//省略 }
当到达一个全局安全点时,这时会根据偏向锁的状态来判断是否需要撤销偏向锁,调用 revoke_at_safepoint方法,这个方法也是在 biasedLocking.cpp中定义的
void BiasedLocking::revoke_at_safepoint(Handle h_obj) { assert(SafepointSynchronize::is_at_safepoint(), "must only be called while at safepoint"); oop obj = h_obj(); //更新撤销偏向锁计数,并返回偏向锁撤销次数和偏向次数 HeuristicsResult heuristics = update_heuristics(obj, false); if (heuristics == HR_SINGLE_REVOKE) {//可偏向且未达到批量处理的阈值(下面会单独解释) revoke_bias(obj, false, false, NULL); //撤销偏向锁 } else if ((heuristics == HR_BULK_REBIAS) || (heuristics == HR_BULK_REVOKE)) {//如果是多次撤销或者多次偏向 //批量撤销 bulk_revoke_or_rebias_at_safepoint(obj, (heuristics == HR_BULK_REBIAS), false, NULL); } clean_up_cached_monitor_info(); }
偏向锁的释放,需要等待全局安全点(在这个时间点上没有正在执行的字节码),首先暂停拥有偏向锁的线程,然后检查持有偏向锁的线程是否还活着,如果线程不处于活动状态,则将对象头设置成无锁状态。如果线程仍然活着,则会升级为轻量级锁,遍历偏向对象的所记录。栈帧中的锁记录和对象头的Mark Word要么重新偏向其他线程,要么恢复到无锁,或者标记对象不适合作为偏向锁。最后唤醒暂停的线程。
JVM内部为每个类维护了一个偏向锁revoke计数器,对偏向锁撤销进行计数,当这个值达到指定阈值时,JVM会认为这个类的偏向锁有问题,需要重新偏向(rebias),对所有属于这个类的对象进行重偏向的操作成为 批量重偏向(bulk rebias)。在做bulk rebias时,会对这个类的epoch的值做递增,这个epoch会存储在对象头中的epoch字段。在判断这个对象是否获得偏向锁的条件是:markword的 biased_lock:1、lock:01、threadid和当前线程id相等、epoch字段和所属类的epoch值相同,如果epoch的值不一样,要么就是撤销偏向锁、要么就是rebias; 如果这个类的revoke计数器的值继续增加到一个阈值,那么jvm会认为这个类不适合偏向锁,就需要进行bulk revoke操作
轻量级锁的获取,是调用 ::slow_enter方法,该方法同样位于 synchronizer.cpp文件中
void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) { markOop mark = obj->mark(); assert(!mark->has_bias_pattern(), "should not see bias pattern here"); if (mark->is_neutral()) { //如果当前是无锁状态, markword的biase_lock:0,lock:01 //直接把mark保存到BasicLock对象的_displaced_header字段 lock->set_displaced_header(mark); //通过CAS将mark word更新为指向BasicLock对象的指针,更新成功表示获得了轻量级锁 if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) { TEVENT (slow_enter: release stacklock) ; return ; } // Fall through to inflate() ... } //如果markword处于加锁状态、且markword中的ptr指针指向当前线程的栈帧,表示为重入操作,不需要争抢锁 else if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) { assert(lock != mark->locker(), "must not re-lock the same lock"); assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock"); lock->set_displaced_header(NULL); return; } #if 0 // The following optimization isn't particularly useful. if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) { lock->set_displaced_header (NULL) ; return ; } #endif //代码执行到这里,说明有多个线程竞争轻量级锁,轻量级锁通过`inflate`进行膨胀升级为重量级锁 lock->set_displaced_header(markOopDesc::unused_mark()); ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD); }
轻量级锁的获取逻辑简单再整理一下
轻量级锁的释放是通过 monitorexit调用
IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem)) #ifdef ASSERT thread->last_frame().interpreter_frame_verify_monitor(elem); #endif Handle h_obj(thread, elem->obj()); assert(Universe::heap()->is_in_reserved_or_null(h_obj()), "must be NULL or an object"); if (elem == NULL || h_obj()->is_unlocked()) { THROW(vmSymbols::java_lang_IllegalMonitorStateException()); } ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread); // Free entry. This must be done here, since a pending exception might be installed on // exit. If it is not cleared, the exception handling code will try to unlock the monitor again. elem->set_obj(NULL); #ifdef ASSERT thread->last_frame().interpreter_frame_verify_monitor(elem); #endif IRT_END
这段代码中主要是通过 ObjectSynchronizer::slow_exit来执行
void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) { fast_exit (object, lock, THREAD) ; }
ObjectSynchronizer::fast_exit的代码如下
void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) { assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here"); // if displaced header is null, the previous enter is recursive enter, no-op markOop dhw = lock->displaced_header(); //获取锁对象中的对象头 markOop mark ; if (dhw == NULL) { // Recursive stack-lock. // Diagnostics -- Could be: stack-locked, inflating, inflated. mark = object->mark() ; assert (!mark->is_neutral(), "invariant") ; if (mark->has_locker() && mark != markOopDesc::INFLATING()) { assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ; } if (mark->has_monitor()) { ObjectMonitor * m = mark->monitor() ; assert(((oop)(m->object()))->mark() == mark, "invariant") ; assert(m->is_entered(THREAD), "invariant") ; } return ; } mark = object->mark() ; //获取线程栈帧中锁记录(LockRecord)中的markword // If the object is stack-locked by the current thread, try to // swing the displaced header from the box back to the mark. if (mark == (markOop) lock) { assert (dhw->is_neutral(), "invariant") ; //通过CAS尝试将Displaced Mark Word替换回对象头,如果成功,表示锁释放成功。 if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) { TEVENT (fast_exit: release stacklock) ; return; } } //锁膨胀,调用重量级锁的释放锁方法 ObjectSynchronizer::inflate(THREAD, object)->exit (true, THREAD) ; }
轻量级锁的释放也比较简单,就是将当前线程栈帧中锁记录空间中的Mark Word替换到锁对象的对象头中,如果成功表示锁释放成功。否则,锁膨胀成重量级锁,实现重量级锁的释放锁逻辑
重量级锁是通过对象内部的监视器(monitor)来实现,而monitor的本质是依赖操作系统底层的MutexLock实现的。我们先来看锁的膨胀过程,从前面的分析中已经知道了所膨胀的过程是通过 ObjectSynchronizer::inflate方法实现的,代码如下
ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) { // Inflate mutates the heap ... // Relaxing assertion for bug 6320749. assert (Universe::verify_in_progress() || !SafepointSynchronize::is_at_safepoint(), "invariant") ; for (;;) { //通过无意义的循环实现自旋操作 const markOop mark = object->mark() ; assert (!mark->has_bias_pattern(), "invariant") ; if (mark->has_monitor()) {//has_monitor是markOop.hpp中的方法,如果为true表示当前锁已经是重量级锁了 ObjectMonitor * inf = mark->monitor() ;//获得重量级锁的对象监视器直接返回 assert (inf->header()->is_neutral(), "invariant"); assert (inf->object() == object, "invariant") ; assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid"); return inf ; } if (mark == markOopDesc::INFLATING()) {//膨胀等待,表示存在线程正在膨胀,通过continue进行下一轮的膨胀 TEVENT (Inflate: spin while INFLATING) ; ReadStableMark(object) ; continue ; } if (mark->has_locker()) {//表示当前锁为轻量级锁,以下是轻量级锁的膨胀逻辑 ObjectMonitor * m = omAlloc (Self) ;//获取一个可用的ObjectMonitor // Optimistically prepare the objectmonitor - anticipate successful CAS // We do this before the CAS in order to minimize the length of time // in which INFLATING appears in the mark. m->Recycle(); m->_Responsible = NULL ; m->OwnerIsThread = 0 ; m->_recursions = 0 ; m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ; // Consider: maintain by type/class /**将object->mark_addr()和mark比较,如果这两个值相等,则将object->mark_addr() 改成markOopDesc::INFLATING(),相等返回是mark,不相等返回的是object->mark_addr()**/ markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ; if (cmp != mark) {//CAS失败 omRelease (Self, m, true) ;//释放监视器 continue ; // 重试 } markOop dmw = mark->displaced_mark_helper() ; assert (dmw->is_neutral(), "invariant") ; //CAS成功以后,设置ObjectMonitor相关属性 m->set_header(dmw) ; m->set_owner(mark->locker()); m->set_object(object); // TODO-FIXME: assert BasicLock->dhw != 0. guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ; object->release_set_mark(markOopDesc::encode(m)); if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ; TEVENT(Inflate: overwrite stacklock) ; if (TraceMonitorInflation) { if (object->is_instance()) { ResourceMark rm; tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s", (void *) object, (intptr_t) object->mark(), object->klass()->external_name()); } } return m ; //返回ObjectMonitor } //如果是无锁状态 assert (mark->is_neutral(), "invariant"); ObjectMonitor * m = omAlloc (Self) ; ////获取一个可用的ObjectMonitor //设置ObjectMonitor相关属性 m->Recycle(); m->set_header(mark); m->set_owner(NULL); m->set_object(object); m->OwnerIsThread = 1 ; m->_recursions = 0 ; m->_Responsible = NULL ; m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ; // consider: keep metastats by type/class /**将object->mark_addr()和mark比较,如果这两个值相等,则将object->mark_addr() 改成markOopDesc::encode(m),相等返回是mark,不相等返回的是object->mark_addr()**/ if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) { //CAS失败,说明出现了锁竞争,则释放监视器重行竞争锁 m->set_object (NULL) ; m->set_owner (NULL) ; m->OwnerIsThread = 0 ; m->Recycle() ; omRelease (Self, m, true) ; m = NULL ; continue ; // interference - the markword changed - just retry. // The state-transitions are one-way, so there's no chance of // live-lock -- "Inflated" is an absorbing state. } if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ; TEVENT(Inflate: overwrite neutral) ; if (TraceMonitorInflation) { if (object->is_instance()) { ResourceMark rm; tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s", (void *) object, (intptr_t) object->mark(), object->klass()->external_name()); } } return m ; //返回ObjectMonitor对象 } }
锁膨胀的过程稍微有点复杂,整个锁膨胀的过程是通过自旋来完成的,具体的实现逻辑简答总结以下几点
锁膨胀的过程实际上是获得一个ObjectMonitor对象监视器,而真正抢占锁的逻辑,在 ObjectMonitor::enter方法里面
重量级锁的竞争,在 ObjectMonitor::enter方法中,代码文件在 objectMonitor.cpp重量级锁的代码就不一一分析了,简单说一下下面这段代码主要做的几件事
void ATTR ObjectMonitor::enter(TRAPS) { // The following code is ordered to check the most common cases first // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors. Thread * const Self = THREAD ; void * cur ; cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ; if (cur == NULL) {//CAS成功 // Either ASSERT _recursions == 0 or explicitly set _recursions = 0. assert (_recursions == 0 , "invariant") ; assert (_owner == Self, "invariant") ; // CONSIDER: set or assert OwnerIsThread == 1 return ; } if (cur == Self) { // TODO-FIXME: check for integer overflow! BUGID 6557169. _recursions ++ ; return ; } if (Self->is_lock_owned ((address)cur)) { assert (_recursions == 0, "internal state error"); _recursions = 1 ; // Commute owner from a thread-specific on-stack BasicLockObject address to // a full-fledged "Thread *". _owner = Self ; OwnerIsThread = 1 ; return ; } // We've encountered genuine contention. assert (Self->_Stalled == 0, "invariant") ; Self->_Stalled = intptr_t(this) ; // Try one round of spinning *before* enqueueing Self // and before going through the awkward and expensive state // transitions. The following spin is strictly optional ... // Note that if we acquire the monitor from an initial spin // we forgo posting JVMTI events and firing DTRACE probes. if (Knob_SpinEarly && TrySpin (Self) > 0) { assert (_owner == Self , "invariant") ; assert (_recursions == 0 , "invariant") ; assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ; Self->_Stalled = 0 ; return ; } assert (_owner != Self , "invariant") ; assert (_succ != Self , "invariant") ; assert (Self->is_Java_thread() , "invariant") ; JavaThread * jt = (JavaThread *) Self ; assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ; assert (jt->thread_state() != _thread_blocked , "invariant") ; assert (this->object() != NULL , "invariant") ; assert (_count >= 0, "invariant") ; // Prevent deflation at STW-time. See deflate_idle_monitors() and is_busy(). // Ensure the object-monitor relationship remains stable while there's contention. Atomic::inc_ptr(&_count); EventJavaMonitorEnter event; { // Change java thread status to indicate blocked on monitor enter. JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this); DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt); if (JvmtiExport::should_post_monitor_contended_enter()) { JvmtiExport::post_monitor_contended_enter(jt, this); } OSThreadContendState osts(Self->osthread()); ThreadBlockInVM tbivm(jt); Self->set_current_pending_monitor(this); // TODO-FIXME: change the following for(;;) loop to straight-line code. for (;;) { jt->set_suspend_equivalent(); // cleared by handle_special_suspend_equivalent_condition() // or java_suspend_self() EnterI (THREAD) ; if (!ExitSuspendEquivalent(jt)) break ; // // We have acquired the contended monitor, but while we were // waiting another thread suspended us. We don't want to enter // the monitor while suspended because that would surprise the // thread that suspended us. // _recursions = 0 ; _succ = NULL ; exit (false, Self) ; jt->java_suspend_self(); } Self->set_current_pending_monitor(NULL); } ...//此处省略无数行代码
如果获取锁失败,则需要通过自旋的方式等待锁释放,自旋执行的方法是 ObjectMonitor::EnterI,部分代码如下
void ATTR ObjectMonitor::EnterI (TRAPS) { Thread * Self = THREAD ; ...//省略很多代码 ObjectWaiter node(Self) ; Self->_ParkEvent->reset() ; node._prev = (ObjectWaiter *) 0xBAD ; node.TState = ObjectWaiter::TS_CXQ ; // Push "Self" onto the front of the _cxq. // Once on cxq/EntryList, Self stays on-queue until it acquires the lock. // Note that spinning tends to reduce the rate at which threads // enqueue and dequeue on EntryList|cxq. ObjectWaiter * nxt ; for (;;) { //自旋,讲node添加到_cxq队列 node._next = nxt = _cxq ; if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ; // Interference - the CAS failed because _cxq changed. Just retry. // As an optional optimization we retry the lock. if (TryLock (Self) > 0) { assert (_succ != Self , "invariant") ; assert (_owner == Self , "invariant") ; assert (_Responsible != Self , "invariant") ; return ; } } ...//省略很多代码 //node节点添加到_cxq队列之后,继续通过自旋尝试获取锁,如果在指定的阈值范围内没有获得锁,则通过park将当前线程挂起,等待被唤醒 for (;;) { if (TryLock (Self) > 0) break ; assert (_owner != Self, "invariant") ; if ((SyncFlags & 2) && _Responsible == NULL) { Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ; } // park self //通过park挂起当前线程 if (_Responsible == Self || (SyncFlags & 1)) { TEVENT (Inflated enter - park TIMED) ; Self->_ParkEvent->park ((jlong) RecheckInterval) ; // Increase the RecheckInterval, but clamp the value. RecheckInterval *= 8 ; if (RecheckInterval > 1000) RecheckInterval = 1000 ; } else { TEVENT (Inflated enter - park UNTIMED) ; Self->_ParkEvent->park() ;//当前线程挂起 } if (TryLock(Self) > 0) break ; //当线程被唤醒时,会从这里继续执行 TEVENT (Inflated enter - Futile wakeup) ; if (ObjectMonitor::_sync_FutileWakeups != NULL) { ObjectMonitor::_sync_FutileWakeups->inc() ; } ++ nWakeups ; if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ; if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) { Self->_ParkEvent->reset() ; OrderAccess::fence() ; } if (_succ == Self) _succ = NULL ; // Invariant: after clearing _succ a thread *must* retry _owner before parking. OrderAccess::fence() ; } ...//省略很多代码 }
TryLock(self)的代码是在 ObjectMonitor::TryLock定义的,代码的实现如下
代码的实现原理很简单,通过自旋,CAS设置monitor的_owner字段为当前线程,如果成功,表示获取到了锁,如果失败,则继续被挂起
int ObjectMonitor::TryLock (Thread * Self) { for (;;) { void * own = _owner ; if (own != NULL) return 0 ; if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) { // Either guarantee _recursions == 0 or set _recursions = 0. assert (_recursions == 0, "invariant") ; assert (_owner == Self, "invariant") ; // CONSIDER: set or assert that OwnerIsThread == 1 return 1 ; } // The lock had been free momentarily, but we lost the race to the lock. // Interference -- the CAS failed. // We can either return -1 or retry. // Retry doesn't make as much sense because the lock was just acquired. if (true) return -1 ; } }
重量级锁的释放是通过 ObjectMonitor::exit来实现的,释放以后会通知被阻塞的线程去竞争锁
void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) { Thread * Self = THREAD ; if (THREAD != _owner) {//如果当前锁对象中的_owner没有指向当前线程 //如果_owner指向的BasicLock在当前线程栈上,那么将_owner指向当前线程 if (THREAD->is_lock_owned((address) _owner)) { // Transmute _owner from a BasicLock pointer to a Thread address. // We don't need to hold _mutex for this transition. // Non-null to Non-null is safe as long as all readers can // tolerate either flavor. assert (_recursions == 0, "invariant") ; _owner = THREAD ; _recursions = 0 ; OwnerIsThread = 1 ; } else { // NOTE: we need to handle unbalanced monitor enter/exit // in native code by throwing an exception. // TODO: Throw an IllegalMonitorStateException ? TEVENT (Exit - Throw IMSX) ; assert(false, "Non-balanced monitor enter/exit!"); if (false) { THROW(vmSymbols::java_lang_IllegalMonitorStateException()); } return; } } //如果当前,线程重入锁的次数,不为0,那么就重新走ObjectMonitor::exit,直到重入锁次数为0为止 if (_recursions != 0) { _recursions--; // this is simple recursive enter TEVENT (Inflated exit - recursive) ; return ; } ...//此处省略很多代码 for (;;) { if (Knob_ExitPolicy == 0) { OrderAccess::release_store(&_owner, (void*)NULL); //释放锁 OrderAccess::storeload(); // See if we need to wake a successor if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) { TEVENT(Inflated exit - simple egress); return; } TEVENT(Inflated exit - complex egress); //省略部分代码... } //省略部分代码... ObjectWaiter * w = NULL; int QMode = Knob_QMode; //根据QMode的模式判断, //如果QMode == 2则直接从_cxq挂起的线程中唤醒 if (QMode == 2 && _cxq != NULL) { w = _cxq; ExitEpilog(Self, w); return; } //省略部分代码... 省略的代码为根据QMode的不同,不同的唤醒机制 } }
根据不同的策略(由QMode指定),从cxq或EntryList中获取头节点,通过ObjectMonitor::ExitEpilog方法唤醒该节点封装的线程,唤醒操作最终由unpark完成
void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) { { assert (_owner == Self, "invariant") ; // Exit protocol: // 1. ST _succ = wakee // 2. membar #loadstore|#storestore; // 2. ST _owner = NULL // 3. unpark(wakee) _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ; ParkEvent * Trigger = Wakee->_event ; // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again. // The thread associated with Wakee may have grabbed the lock and "Wakee" may be // out-of-scope (non-extant). Wakee = NULL ; // Drop the lock OrderAccess::release_store_ptr (&_owner, NULL) ; OrderAccess::fence() ; // ST _owner vs LD in unpark() if (SafepointSynchronize::do_call_back()) { TEVENT (unpark before SAFEPOINT) ; } DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self); Trigger->unpark() ; //unpark唤醒线程 // Maintain stats and report events to JVMTI if (ObjectMonitor::_sync_Parks != NULL) { ObjectMonitor::_sync_Parks->inc() ; } }
分析源码,需要很大的耐心,希望大家能有耐心看下去,有疑问欢迎微信留言