Cowry 2019-03-18
在python数据分析的学习和应用过程中,经常需要用到numpy的随机函数,由于随机函数random的功能比较多,经常会混淆或记不住,下面我们一起来汇总学习下。
import numpy as np
numpy.random.rand(d0,d1,...,dn)
np.random.rand(4,2) array([[ 0.02173903, 0.44376568], [ 0.25309942, 0.85259262], [ 0.56465709, 0.95135013], [ 0.14145746, 0.55389458]]) np.random.rand(4,3,2) # shape: 4*3*2 array([[[ 0.08256277, 0.11408276], [ 0.11182496, 0.51452019], [ 0.09731856, 0.18279204]], [[ 0.74637005, 0.76065562], [ 0.32060311, 0.69410458], [ 0.28890543, 0.68532579]], [[ 0.72110169, 0.52517524], [ 0.32876607, 0.66632414], [ 0.45762399, 0.49176764]], [[ 0.73886671, 0.81877121], [ 0.03984658, 0.99454548], [ 0.18205926, 0.99637823]]])
numpy.random.randn(d0,d1,...,dn)
np.random.randn() # 当没有参数时,返回单个数据 -1.1241580894939212 np.random.randn(2,4) array([[ 0.27795239, -2.57882503, 0.3817649 , 1.42367345], [-1.16724625, -0.22408299, 0.63006614, -0.41714538]]) np.random.randn(4,3,2) array([[[ 1.27820764, 0.92479163], [-0.15151257, 1.3428253 ], [-1.30948998, 0.15493686]], [[-1.49645411, -0.27724089], [ 0.71590275, 0.81377671], [-0.71833341, 1.61637676]], [[ 0.52486563, -1.7345101 ], [ 1.24456943, -0.10902915], [ 1.27292735, -0.00926068]], [[ 0.88303 , 0.46116413], [ 0.13305507, 2.44968809], [-0.73132153, -0.88586716]]])
标准正态分布介绍
3.1 numpy.random.randint()
numpy.random.randint(low, high=None, size=None, dtype='l')
np.random.randint(1,size=5) # 返回[0,1)之间的整数,所以只有0 array([0, 0, 0, 0, 0]) np.random.randint(1,5) # 返回1个[1,5)时间的随机整数 4 np.random.randint(-5,5,size=(2,2)) array([[ 2, -1], [ 2, 0]])
3.2 numpy.random.random_integers
numpy.random.random_integers(low, high=None, size=None)
该函数在最新的numpy版本中已被替代,建议使用randint函数
np.random.random_integers(1,size=5) array([1, 1, 1, 1, 1])
print('-----------random_sample--------------') print(np.random.random_sample(size=(2,2))) print('-----------random--------------') print(np.random.random(size=(2,2))) print('-----------ranf--------------') print(np.random.ranf(size=(2,2))) print('-----------sample--------------') print(np.random.sample(size=(2,2))) -----------random_sample-------------- [[ 0.34966859 0.85655008] [ 0.16045328 0.87908218]] -----------random-------------- [[ 0.25303772 0.45417512] [ 0.76053763 0.12454433]] -----------ranf-------------- [[ 0.0379055 0.51288667] [ 0.71819639 0.97292903]] -----------sample-------------- [[ 0.59942807 0.80211491] [ 0.36233939 0.12607092]]
numpy.random.choice(a, size=None, replace=True, p=None)
np.random.choice(5,3) array([4, 1, 4]) np.random.choice(5, 3, replace=False) # 当replace为False时,生成的随机数不能有重复的数值 array([0, 3, 1]) np.random.choice(5,size=(3,2)) array([[1, 0], [4, 2], [3, 3]]) demo_list = ['lenovo', 'sansumg','moto','xiaomi', 'iphone'] np.random.choice(demo_list,size=(3,3)) array([['moto', 'iphone', 'xiaomi'], ['lenovo', 'xiaomi', 'xiaomi'], ['xiaomi', 'lenovo', 'iphone']], dtype='<U7')
demo_list = ['lenovo', 'sansumg','moto','xiaomi', 'iphone'] np.random.choice(demo_list,size=(3,3), p=[0.1,0.6,0.1,0.1,0.1]) array([['sansumg', 'sansumg', 'sansumg'], ['sansumg', 'sansumg', 'sansumg'], ['sansumg', 'xiaomi', 'iphone']], dtype='<U7')
np.random.seed(0) np.random.rand(5) array([ 0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 ]) np.random.seed(1676) np.random.rand(5) array([ 0.39983389, 0.29426895, 0.89541728, 0.71807369, 0.3531823 ]) np.random.seed(1676) np.random.rand(5) array([ 0.39983389, 0.29426895, 0.89541728, 0.71807369, 0.3531823 ])
pytyhon学习资料
python学习资料