zhouhaihua00 2020-02-18
python处理数据文件第一步是要读取数据,文件类型主要包括文本文件(csv、txt等)、excel文件、数据库文件、api等。
下面整理下python有哪些方式可以读取数据文件。
具体用法可见:
一文搞懂python文件读写
python内置了csv模块用于读写csv文件,csv是一种逗号分隔符文件,是数据科学中最常见的数据存储格式之一。
csv模块能轻松完成各种体量数据的读写操作,当然大数据量需要代码层面的优化。
# 读取csv文件 import csv with open('test.csv','r') as myFile: lines=csv.reader(myFile) for line in lines: print (line)
import csv with open('test.csv','w+') as myFile: myWriter=csv.writer(myFile) # writerrow一行一行写入 myWriter.writerow([7,8,9]) myWriter.writerow([8,'h','f']) # writerow多行写入 myList=[[1,2,3],[4,5,6]] myWriter.writerows(myList)
import numpy as np # loadtxt()中的dtype参数默认设置为float # 这里设置为str字符串便于显示 np.loadtxt('test.csv',dtype=str) # out:array(['1,2,3', '4,5,6', '7,8,9'], dtype='<U5')
.npy
, .npz
或者pickled
持久化文件。import numpy as np # 先生成npy文件 np.save('test.npy', np.array([[1, 2, 3], [4, 5, 6]])) # 使用load加载npy文件 np.load('test.npy') ''' out:array([[1, 2, 3], [4, 5, 6]]) '''
import numpy as np x = np.arange(9).reshape(3,3) x.tofile('test.bin') np.fromfile('test.bin',dtype=np.int) # out:array([0, 1, 2, 3, 4, 5, 6, 7, 8])
pandas是数据处理最常用的分析库之一,可以读取各种各样格式的数据文件,一般输出dataframe格式。
如:txt、csv、excel、json、剪切板、数据库、html、hdf、parquet、pickled文件、sas、stata等等
import pandas as pd pd.read_csv('test.csv')
import pandas as pd pd.read_excel('test.xlsx')
df = pd.DataFrame([['a', 'b'], ['c', 'd']],index=['row 1', 'row 2'],columns=['col 1', 'col 2']) j = df.to_json(orient='split') pd.read_json(j,orient='split')
pandas学习网站:
https://pandas.pydata.org/
python用于读写excel文件的库有很多,除了前面提到的pandas,还有xlrd、xlwt、openpyxl、xlwings等等。
主要模块:
python几乎支持对所有数据库的交互,连接数据库后,可以使用sql语句进行增删改查。
主要模块:
使用参考地址:
https://blog.csdn.net/a87b01c14/article/details/51546727
关于如何使用python连接mysql:
pymysql操作实例