所有手机都搭上了AI的车,可为什么你就不屑呢?

我相信 2018-04-25

随便观看一场手机发布会,就能发现AI功能的加入,不过很多用户都对此都有些不屑一顾,心中暗自觉得有蹭热点的嫌疑。那么,这些宣传中功能到底是不是所谓的AI呢?

所有手机都搭上了AI的车,可为什么你就不屑呢?

手机的新卖点:AI

从去年下半年开始,几乎所有的手机产品在发布时都搭上了AI的概念,三星去年先发布了AI助手Bixby,随后又在今年发布Galaxy S9时也强调了Bixby通过摄像头可以完成智能翻译、汇率转换等功能。华为麒麟970芯片也在全球第一次集成了NPU神经网络单元,随后的Mate 10、P20产品中都加入了拍照识物的功能,其中P20系列的AI摄影大师,可以智能识别动物、食物、自然、人像等19个类别,500+个场景,随即通过场景检测+推荐规则+用户习惯 = 拍照模式的运算过程来为用户定制拍照模式。最近发布的Nubia V18也优化了NeoSmart AI引擎,表示系统可以更加省电、流畅、好用。

就连相对低调的苹果,在A11处理器的名称中也加入了“仿生”一词,同时也将其称作为一个每秒运算次数高达6000亿次的神经网络引擎。“神经网络”一词的使用,也无疑向消费者暗示该芯片同样具备对于AI能力的支持。

广义上看一定算AI

“擦,搞个相册智能分类,也算是AI了。”这是一位网友看到某国内手机厂商的发布会时的评述。确实,现在所有的手机厂商都开始与AI概念靠拢,大到芯片,小到上述的相册分类管理,其实这些功能在以往的手机或电脑上也都似曾相识,比如语音助手、拍照翻译、利用LBS+AR+摄像头的地点指引、手机的能耗管控,让很多人以为本身是过往就有的功能却瞬间包装成了AI云云。

那么,什么是AI呢?除了字面翻译过来的人工智能四个字外,实际上人们对于AI的定义还存在争议。例如,在有的概念中强调了AI需要具备机器学习与深度学习的能力,那么显然一些手机中,仅仅是利用现有的数据库,然后做出相应判断的智能化功能并不符合这一概念。

另外,在深度学习的概念中,有的人认为应该强调深度学习,也就需要具有神经网络,让机器来模拟人脑进行学习,自我形成逻辑,然后获得超越人脑的能力。就如同Alpha Go在通过棋谱学习、自我对弈后,完成了对于人类棋手的飞跃。显然,很多手机中的AI功能也难以做到这点。不过在这个观点中,一个问题在于实际人类目前对于人脑的了解也十分有限,计算机的深度学习99%都是采用计算机自己的方式,这也与AI中的“人工”两字有些相去较远。

不过,AI有一个目前较为公认的广义概念,那就是:根据环境的认知,作出合理的行动,并且最大化一个被定义的目标函数。

显然,目前所有手机厂商推出的AI功能都满足于这个广义概念的AI,这些功能均是根据用户的环境,然后自动做出相应的行动。也可以这么说,即便是此前用户已经十分熟悉的Siri、一些电池管家应用、即时翻译应用均可称之为AI。

AI级别与用户内心期许存在差异

但是,为什么还是会出现上述用户的对于所谓AI概念滥用的吐槽呢?显然原因就在目前业界对于AI概念细化后的探讨,Alpha Go的案例像是给全球一个新的启示,那就是原本能力偏弱的AI可以达到超越人脑的高度,这也给AI贴上一个新的标签。

而Alpha Go背后超强学习能力,也成为了AI的新标志,机器不仅仅能依靠现有的大数据来做出反应,还能通过数据库来自我学习、自我寻找其中逻辑、从而推演出新的解决方案,这是AI新的发展方向。

相关推荐