lovejk 2019-06-22
Pinpoint是一个分析大型分布式系统的平台,提供解决方案来处理海量跟踪数据。2012年七月开始开发,2015年1月9日作为开源项目启动。
今天主要介绍Pinpoint相关概念,后面再介绍具体的搭建过程。
过去的因特网的用户数量相对较小,而因特网服务的架构也没那么复杂。web服务通常使用两层(web 服务器和数据库)或三层(web服务器,应用服务器和数据库)架构。然而在如今,随着互联网的成长,需要支持大量的并发连接,并且需要将功能和服务有机结合,导致更加复杂的软件栈组合。更确切地说,比三层层次更多的n层架构变得更加普遍。SOA或者微服务架构成为现实。
系统的复杂度因此提升。系统越复杂,越难解决问题,例如系统失败或者性能问题。在三层架构中找到解决方案还不是太难,仅仅需要分析3个组件比如web服务器,应用服务器和数据库,而服务器数量也不多。但是,如果问题发生在n层架构中,就需要调查大量的组件和服务器。另一个问题是仅仅分析单个组件很难看到大局;当发生一个低可见度的问题时,系统复杂度越高,就需要更长的时间来查找原因。最糟糕的是,某些情况下我们甚至可能无法查找出来。
这样的问题也发生在NAVER的系统中。使用了大量工具如应用性能管理(APM)但是还不足以有效处理问题。因此我们最终决定为n层架构开发新的跟踪平台,为n层架构的系统提供解决方案。
Pinpoint, 2012年七月开始开发,在2015年1月作为一个开源项目启动, 是一个为大型分布式系统服务的n层架构跟踪平台。 Pinpoint的特点如下:
pinpoint跟踪单个事务中的分布式请求,基于google Dapper。
当一个消息从Node1发送到Node2时,分布式追踪系统的核心是在分布式系统中识别在Node1中处理的消息和在Node2中出的消息之间的关系。
图1. 分布式系统中的消息关系
问题在于无法在消息之间识别关系。例如,我们无法识别从Node1发送的第N个消息和Node2接收到的N'消息之间的关系。换句话说,当Node1发送完第X个消息时,是无法在Node2接收到的N的消息里面识别出第X个消息的。有一种方式试图在TCP或者操作系统层面追踪消息。但是,实现很复杂而且性能低下,而且需要为每个协议单独实现。另外,很难精确追踪消息。
不过,Google dapper实现了一个简单的解决方案来解决这个问题。这个解决方案通过在发送消息时添加应用级别的标签作为消息之间的关联。例如,在HTTP请求中的HTTP header中为消息添加一个标签信息并使用这个标签跟踪消息。
而Pinpoint基于google dapper的跟踪技术,但是已经修改为在调用的header中添加应用级别标签数据以便在远程调用中跟踪分布式事务。标签数据由多个key组成,定义为TraceId。
Pinpoint中,核心数据结构由Span, Trace, 和 TraceId组成。
下图描述TraceId的行为,在4个节点之间执行了3次的RPC调用:
图2: TraceId行为示例
在上图中,TransactionId (TxId) 体现了三次不同的RPC作为单个事务被相互关联。但是,TransactionId 本身不能精确描述PRC之间的关系。为了识别PRC之间的关系,需要SpanId 和 ParentSpanId (pSpanId). 假设一个节点是Tomcat,可以将SpanId想象为处理HTTP请求的线程,ParentSpanId代表发起这个RPC调用的SpanId.
使用TransactionId,Pinpoint可以发现关联的n个Span,并使用SpanId和ParentSpanId将这n个span排列为继承树结构。
SpanId 和 ParentSpanId 是 64位长度的整型。可能发生冲突,因为这个数字是任意生成的,但是考虑到值的范围可以从-9223372036854775808到9223372036854775807,不太可能发生冲突. 如果key之间出现冲突,Pinpoint和Google Dapper系统,会让开发人员知道发生了什么,而不是解决冲突。
TransactionId 由 AgentIds, JVM (java虚拟机)启动时间, 和 SequenceNumbers/序列号组成.
Dapper 和 Zipkin, Twitter的一个分布式系统跟踪平台, 生成随机TraceIds (Pinpoint是TransactionIds) 并将冲突情况视为正常。然而, 在Pinpiont中想避免冲突的可能,有两种选择:一是数据量小但是冲突的可能性高,二是数据量大但是冲突的可能性低。Pinpiont选择了第二种。
前面我们解释了分布式事务跟踪。实现的方法之一是开发人员自己修改代码。当发生RPC调用时容许开发人员添加标签信息。但是,修改代码会成为包袱,即使这样的功能对开发人员非常有用。
Twitter的 Zipkin 使用修改过的类库和它自己的容器(Finagle)来提供分布式事务跟踪的功能。但是,它要求在需要时修改代码。我们期望功能可以不修改代码就工作并希望得到代码级别的可见性。为了解决这个问题,pinpoint中使用了字节码增强技术。Pinpoint agent干预发起RPC的代码以此来自动处理标签信息。
字节码增强在手工方法和自动方法两者之间属于自动方法。
下面是每个方法的优点和缺点:
Table1 每个方法的优缺点
由于字节码增强技术处理java字节码, 有增加开发风险的趋势,同时会降低效率。另外,开发人员更容易犯错。在pinpoint,通过抽象出拦截器(interceptor)来改进效率和可达性(accessibility)。pinpoint在类装载时通过介入应用代码为分布式事务和性能信息注入必要的跟踪代码。这会提升性能,因为代码注入是在应用代码中直接实施的。
图3: 字节码增强行为
在pinpoint中,拦截器API在性能数据被记录的地方分开(separated)。为了跟踪,我们添加拦截器到目标方法使得before()方法和after()方法被调用,并在before()方法和after()方法中实现了部分性能数据的记录。使用字节码增强,pinpoint agent可以记录需要方法的数据,只有这样采样数据的大小才能变小。
pinpoint是和应用一起运行的另外的应用。使用字节码增强使得pinpoint看上去不需要代码修改。通常,字节码增强技术让应用容易造成风险。如果问题发生在pinpoint中,它会影响应用。后面会分享更多devops和DBA方面的内容,感兴趣的朋友可以关注一下~