冰晶云梦 2019-06-27
公司的妹子不会做并发测试。做完一名程序猿看着有点干捉急。并发测试是多个人同时访问一个服务,这不就是多线程吗!于是灵光一现使用多线程来写并发测试代码。想想心理都有点小激动咧。效果比工具还好,废话不多说贴代码
添加Maven依赖
<!--添加OKHttp.jar包-->
<dependency>
<groupId>com.squareup.okhttp3</groupId> <artifactId>okhttp</artifactId> <version>3.8.1</version>
</dependency>
<!-- https://mvnrepository.com/art... -->
<dependency>
<groupId>com.squareup.okio</groupId> <artifactId>okio</artifactId> <version>1.11.0</version>
</dependency>
<dependency>
<groupId>com.google.code.gson</groupId> <artifactId>gson</artifactId> <version>2.8.0</version>
</dependency>
先封装OKHTTP(使用CallBack思想做的封装),这个很早之前就封装了,公司移动端也是使用OKHTTP做的服务请求调用。经常遇到图片上传不了的问题,报的错是Socket连接超时的问题。解决这个问题so easy,把连接时间(KEEP_ALIVE)时间设置长一点就行了嘛!
OkHttp底层是用socket做的通信,现在很多应该的底层通信都用的Socket,例子不多说,全靠经验。
public abstract class HttpCommon {
/** * 设置连接超时时间为30000秒 */ private final static int CONNECT_TIMT_OUT = 30000; /** * 设置写超时时间为30000秒 */ private final static int WRITE_TIME_OUT = 30000; static { final OkHttpClient.Builder httpBuilder = new OkHttpClient.Builder(); okHttpClient = httpBuilder.connectTimeout(CONNECT_TIMT_OUT, TimeUnit.SECONDS) .writeTimeout(WRITE_TIME_OUT, TimeUnit.SECONDS).build(); } public abstract void callBack(String responseString); /** * get请求 * * @param url url地址 * @param map 请求参数 * @return 返回结果。如果为“”表示失败 */ public void get(String url, Map<Object, Object> map) { url = wrapUrl(url, map); // 创建请求参数 Request request = new Request.Builder().url(url).build(); //创建请求对象 Call call = okHttpClient.newCall(request); try { Response response = call.execute(); if (response.isSuccessful()) { callBack(response.body().string()); } } catch (IOException e) { e.printStackTrace(); } } /** * post请求 * * @param url post请求的url * @param t post请求的表单实体 * @return 返回结果。如果为“”表示失败 */ public <T> void post(String url, Map<Object, Object> map, T t) { url = wrapUrl(url, map); String json = new Gson().toJson(t); RequestBody body = RequestBody.create(JSON, json); Request request = new Request.Builder().url(url).post(body).build(); Response response = null; try { response = okHttpClient.newCall(request).execute(); if (response.isSuccessful()) { callBack(response.body().string()); } } catch (IOException e) { e.printStackTrace(); } } /** * post请求 * * @param url post请求的url * @param t post请求的表单实体 * @return 返回结果。如果为“”表示失败 */ public <T> void post(String url, T t) { String json = new Gson().toJson(t); RequestBody body = RequestBody.create(JSON, json); Request request = new Request.Builder().url(url).post(body).build(); Response response = null; try { response = okHttpClient.newCall(request).execute(); if (response.isSuccessful()) { callBack(response.body().string()); } } catch (IOException e) { e.printStackTrace(); } } /** * 上传文件请求 * * @param url 请求url * @param map 请求参数 * @param filePath 文件路径 * @return 返回结果。结果为""表示失败 */ private void uploadFile(String url, Map<Object, Object> map, String filePath) { url = wrapUrl(url, map); File file = new File(filePath); RequestBody fileBody = RequestBody.create(OCTET, file); RequestBody requestBody = new MultipartBody.Builder().setType(MultipartBody.FORM) .addFormDataPart("image", file.getName(), fileBody).build(); Request request = new Request.Builder().url(url).post(requestBody).build(); execute(request); } /** * 上传多个文件请求 * * @param url 请求url * @param map 请求参数 * @param filePaths 文件路径 * @return 返回结果。结果为""表示失败 */ private void uploadFiles(String url, Map<Object, Object> map, List<String> filePaths) { url = wrapUrl(url, map); MultipartBody.Builder builder = new MultipartBody.Builder(); builder.setType(MultipartBody.FORM); for (String str : filePaths) { File file = new File(str); RequestBody fileBody = RequestBody.create(OCTET, file); builder.addFormDataPart("image", file.getName(), fileBody); } RequestBody requestBody = builder.build(); Request request = new Request.Builder().url(url).post(requestBody).build(); execute(request); } /** * 执行文件上传操作 * * @param request */ private void execute(Request request) { try { Response response = okHttpClient.newCall(request).execute(); if (response.isSuccessful()) { callBack(response.body().string()); } } catch (IOException e) { e.printStackTrace(); } } /** * 拼接get请求url * * @param url 请求url * @param map 参数 * @return 返回拼接完的url地址 */ private String wrapUrl(String url, Map<Object, Object> map) { if (null == map) { return url; } url += "?"; for (Map.Entry entry : map.entrySet()) { url += entry.getKey() + "=" + entry.getValue() + "&"; } if (url.endsWith("&")) { url = url.substring(0, url.length() - 1); } return url; } /** * 请求客户端 */ private static OkHttpClient okHttpClient; /** * Json媒体类型 */ private static final MediaType JSON = MediaType.parse("application/json; charset=utf-8"); /** * 二进制流的媒体类型 */ private static final MediaType OCTET = MediaType.parse("application/octet-stream");
}
public class RunThread {
private final String URL; private HttpCommon httpCommon; private int num; private static ThreadPoolExecutor executor = new ThreadPoolExecutor(10, 100, 1000000L, TimeUnit.SECONDS, new LinkedBlockingDeque<>()); private CountDownLatch countDownLatch; /** * @param url 服务URL地址, * @param num 并发访问次数,一般配置50+ */ public RunThread(String url, int num) { this.URL = url; this.num = num; this.countDownLatch = new CountDownLatch(num); httpCommon = new HttpCommon() { @Override public void callBack(String responseString) { System.out.println(responseString); } }; } public void testGet(Map<Object, Object> map) { long startTime = System.currentTimeMillis(); for (int i = 0; i < num; i++) { executor.execute(new Runnable() { @Override public void run() { httpCommon.get(URL, map); countDownLatch.countDown(); } }); } try { countDownLatch.await(); long executeTime = System.currentTimeMillis() - startTime; System.out.println("一共消耗:" + executeTime +"毫秒"); } catch (InterruptedException e) { e.printStackTrace(); } } public <T> void testPost(Map<Object, Object> map, T t) { long startTime = System.currentTimeMillis(); for (int i = 0; i < num; i++) { executor.execute(new Runnable() { @Override public void run() { httpCommon.post(URL, map, t); countDownLatch.countDown(); } }); } try { countDownLatch.wait(); long executeTime = System.currentTimeMillis() - startTime; System.out.println("一共消耗:" + executeTime +"毫秒"); } catch (InterruptedException e) { e.printStackTrace(); } }
}
public static void main(String[] args) { String Url = "http://localhost:8085/test/add"; RunThread testMain = new RunThread(Url, 1000); // 测试Get请求 testMain.testGet(new HashMap<>());
// // 测试POST请求、PUT请求、DELETE请求
// testMain.testPost(new HashMap<>(), null);
}
上面是并发测试代码,那么如何写高并发测试代码呢!想到两点:一个锁、一个事务。先用Oracle做实验。
<insert id="insert" parameterType="int">
insert into testa (aaaa, bbbb) values (#{aaa}, #{aaa})
</insert>
<select id="select" resultType="int">
select max(aaaa) from testa
</select>
Service层代码,设置事务的隔离级别为不可重复读
Isolation.REPEATABLE_READ,结果报错“Could not open JDBC Connection for transaction; nested exception is java.sql.SQLException: 仅 READ_COMMITTED 和 SERIALIZABLE 是有效的事务处理级”。卧槽!还能不能一起愉快地玩耍了,Oracle居然只支持可重复读和可系列化两种事务级别,真是让人大跌眼镜。
贴一下高并发代码吧,经过实验,通过1000个并发请求,使用Durid + Lock成功1百个不到(在这里还是得喷一下阿里的技术),使用dbcp2 + Lock成功2百多个,使用dbcp2 + synchronized 竟然成功了940个。
@Autowired
private TestMapper testMapper;
//private Lock lock = new ReentrantLock();
@Transactional(isolation = Isolation.SERIALIZABLE)
public synchronized Integer test(Integer a, Integer b) {
int c = testMapper.select(); c += 1; testMapper.insert(c); return c;
}
代码有问题,找找错误原因吧。Spring AOP执行事务,会在Service方法执行之前就开始事务,再执行Synchronized同步方法。这样会导致查询数据并没有做同步,修改成如下代码,能完美解决问题。测试得出如下代码的执行效率最高,1000个并发耗时9018毫秒
@Autowired
private TestMapper testMapper;
//private Lock lock = new ReentrantLock();
public synchronized Integer test(Integer a, Integer b) {
int c = testMapper.select(); c += 1; update(c); return c;
}
@Transactional(isolation = Isolation.SERIALIZABLE)
public void update(int c) {
testMapper.insert(c);
}