python 下的 word2vec 学习

Joyliness 2018-09-05

1.ubuntu下安装gensim

refer to: ubuntu 14.04 安装gensim

为了保证安装成功,首先升级一下easy_install工具。

sudo easy_install -U setuptools
1

之后使用easy_install进行安装,使用apt-get安装会遇到编码出错,不知为什么,使用easy_install安装成功就行了。

sudo easy_install --upgrade gensim
1
2

结果在import gensim 中还出现了点小错误,缺少了平pattern模块,所以直接pip 安装。

sudo pip install pattern
1

2.训练生成模型

安装完成之后,就来训练模型。

refer:中英文维基百科语料上的word2vec实验

模型的训练如下:

# ################# 例1 #########################
# import modules & set up logging
import gensim, logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
sentences = [['first', 'sentence'], ['second', 'sentence']]
# train word2vec on the two sentences
model = gensim.models.Word2Vec(sentences, min_count=1)
1
2
3
4
5
6
7
8

在本次的实验中,我们的数据是保存在txt文件中的。每一行对应一个句子(已经分词,以空格隔开),我们可以直接用LineSentence把txt文件转为所需要的格式。

# ################# 例2 #########################
from gensim import Word2Vec
from gensim.Word2Vec import LineSentence
# inp为输入语料
inp = 'wiki.zh.text.jian.seg.txt'
# outp1 为输出模型
outp1 = 'wiki.zh.text.model'
# outp2为原始c版本word2vec的vector格式的模型
outp2 = 'wiki.zh.text.vector'
model = Word2Vec(LineSentence(inp), size=400, window=5, min_count=5, workers=multiprocessing.cpu_count())
model.save(outp1)
model.save_word2vec_format(outp2, binary=False)
1
2
3
4
5
6
7
8
9
10
11
12
13

关于Word2Vec(…) 模型的参数说明(refer to: gensim实现python对word2vec的训练和计算和word2vec使用说明):

LineSentence(inp):应该是把word2vec训练模型的磁盘存储文件(model在内存中总是不踏实)转换成所需要的格式;对应的格式是参考上面的例1。 size:是每个词的向量维度; window:是词向量训练时的上下文扫描窗口大小,窗口为5就是考虑前5个词和后5个词; min-count:设置最低频率,默认是5,如果一个词语在文档中出现的次数小于5,那么就会丢弃; workers:是训练的进程数(需要更精准的解释,请指正),默认是当前运行机器的处理器核数。这些参数先记住就可以了。

说明一下输入语料,输入的是文本文件的格式,其中没一行表示一个文章,而且是经过分词处理的。词与词之间用空格隔开就行了。分词的工具有很多,我一般用的是结巴分词(不知道大家以后没有好的分词工具推荐)。一般来说,训练集越大,结果的泛化性越好,对于专业领域的话,最好能使用专业领域的语料来进行训练。

3.导入模型

# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
import gensim
# 导入模型
model = gensim.models.Word2Vec.load("wiki.zh.text.model")
1
2
3
4
5
6

4. 模型使用

可以参照官网上的指导迅速了解model的各种功能方法。

4.0 获取词向量

print model[u'汽车']
 type(model[u'汽车'])
1
2
# 结果
[ 3.74845356e-01 1.86477005e+00 1.28353190e+00 8.04618478e-01 ... ]
numpy.ndarray
1
2
3

4.1 计算一个词的最近似的词,倒排序

result = model.most_similar(u'足球')
for each in result:
 print each[0] , each[1]
1
2
3
国际足球 0.556692957878
足球运动 0.530436098576
篮球 0.518306851387
国家足球队 0.516140639782
足球队 0.513238489628
足球联赛 0.500901579857
football 0.500162124634
体育 0.499264538288
足球比赛 0.488131582737
冰球 0.48725092411
1
2
3
4
5
6
7
8
9
10

4.2 计算两词之间的余弦相似度

word2vec一个很大的亮点:支持词语的加减运算。(实际中可能只有少数例子比较符合)

>>> model.most_similar(positive=['woman', 'king'], negative=['man'])
[('queen', 0.50882536), ...]
1
2
sim1 = model.similarity(u'勇敢', u'战斗')
sim2 = model.similarity(u'勇敢', u'胆小')
sim3 = model.similarity(u'高兴', u'开心')
sim4 = model.similarity(u'伤心', u'开心')
print sim1 
print sim2
print sim3
print sim4
1
2
3
4
5
6
7
8
0.254622852224
0.38974887559
0.423695453969
0.376244588456
1
2
3
4

4.3 计算两个集合之间的余弦似度

当出现某个词语不在这个训练集合中的时候,会报错!!!。

list1 = [u'今天', u'我', u'很', u'开心']
list2 = [u'空气',u'清新', u'善良', u'开心']
list3 = [u'国家电网', u'再次', u'宣告', u'破产', u'重新']
list_sim1 = model.n_similarity(list1, list2)
print list_sim1
list_sim2 = model.n_similarity(list1, list3)
print list_sim2
1
2
3
4
5
6
7
0.541874230659
0.13056320154
1
2

4.4 选出集合中不同类的词语

list = [u'纽约', u'北京', u'上海', u'西安']
print model.doesnt_match(list)
list = [u'纽约', u'北京', u'上海', u'西瓜']
print model.doesnt_match(list)
1
2
3
4
纽约
西瓜

python 下的 word2vec 学习

相关推荐