Python技术博文 2019-07-01
数据集来自Kaggle,质量很高,由知名医院的专业人员严格审核标注,如图所示数据有4种类别:
文件大小约为5GB,8万多张图像,分为训练,测试,验证三个文件夹,每个文件夹按照种类不同分成4个子文件夹,其次是具体图像文件。
挂载文件夹:
from google.colab import drive drive.mount('/content/gdrive/')
按照提示进行验证,结果如下:
kaggle数据下载:
创建kaggle账户并下载kaggle.json文件。创建账户这里就不介绍了,创建完账户后在“我的账户”-“API”中选择“CREATE NEW API TOKEN”,然后下载kaggle.json文件。
创建kaggle文件夹:
!mkdir -p ~/.kaggle
将kaggle.json文件夹复制到指定文件夹:
!cp /content/gdrive/My\ Drive/kaggle.json ~/.kaggle/
测试是否成功:
!kaggle competitions list
下载数据集:
!kaggle datasets download -d paultimothymooney/kermany2018
解压文件:
!unzip "/content/kermany2018.zip"
将文件解压至google云盘:
!unzip "/content/OCT2017.zip" -d "/content/gdrive/My Drive"
训练,测试文件夹:
import os train_folder = os.path.join('/','content','gdrive','My Drive','OCT', 'train', '**', '*.jpeg') test_folder = os.path.join('/','content','gdrive','My Drive','OCT', 'test', '**', '*.jpeg')
有人不知道这里的“ ** ”什么意思,我举例说明吧:
Example: If we had the following files on our filesystem: - /path/to/dir/a.txt - /path/to/dir/b.py - /path/to/dir/c.py If we pass "/path/to/dir/*.py" as the directory, the dataset would produce: - /path/to/dir/b.py - /path/to/dir/c.py
def input_fn(file_pattern, labels, image_size=(224,224), shuffle=False, batch_size=64, num_epochs=None, buffer_size=4096, prefetch_buffer_size=None): table = tf.contrib.lookup.index_table_from_tensor(mapping=tf.constant(labels)) num_classes = len(labels) def _map_func(filename): label = tf.string_split([filename], delimiter=os.sep).values[-2] image = tf.image.decode_jpeg(tf.read_file(filename), channels=3) image = tf.image.convert_image_dtype(image, dtype=tf.float32) # vgg16模型图像输入shape image = tf.image.resize_images(image, size=image_size) return (image, tf.one_hot(table.lookup(label), num_classes)) dataset = tf.data.Dataset.list_files(file_pattern, shuffle=shuffle) # tensorflow2.0以后tf.contrib模块就不再维护了 if num_epochs is not None and shuffle: dataset = dataset.apply(tf.contrib.data.shuffle_and_repeat(buffer_size, num_epochs)) elif shuffle: dataset = dataset.shuffle(buffer_size) elif num_epochs is not None: dataset = dataset.repeat(num_epochs) # map默认是序列的处理数据,取消序列可加快数据处理 dataset = dataset.apply( tf.contrib.data.map_and_batch(map_func=_map_func, batch_size=batch_size, num_parallel_calls=os.cpu_count())) # prefetch数据预读取,合理利用CPU和GPU的空闲时间 dataset = dataset.prefetch(buffer_size=prefetch_buffer_size) return dataset
import tensorflow as tf import os # 设置log显示等级 tf.logging.set_verbosity(tf.logging.INFO) # 数据集标签 labels = ['CNV', 'DME', 'DRUSEN', 'NORMAL'] # include_top:不包含最后3个全连接层 keras_vgg16 = tf.keras.applications.VGG16(input_shape=(224,224,3), include_top=False) output = keras_vgg16.output output = tf.keras.layers.Flatten()(output) predictions = tf.keras.layers.Dense(len(labels), activation=tf.nn.softmax)(output) model = tf.keras.Model(inputs=keras_vgg16.input, outputs=predictions) for layer in keras_vgg16.layers[:-4]: layer.trainable = False optimizer = tf.train.AdamOptimizer() model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) est_config=tf.estimator.RunConfig(log_step_count_steps=10) estimator = tf.keras.estimator.model_to_estimator(model,model_dir='/content/gdrive/My Drive/estlogs',config=est_config) BATCH_SIZE = 32 EPOCHS = 2 estimator.train(input_fn=lambda:input_fn(test_folder, labels, shuffle=True, batch_size=BATCH_SIZE, buffer_size=2048, num_epochs=EPOCHS, prefetch_buffer_size=4))