蜗牛慢爬的李成广 2020-01-29
pip install scikit-opt
对于当前的开发者版本:
git clone :guofei9987/scikit-opt.git cd scikit-opt pip install .
第一步:定义你的问题
import numpy as np def schaffer(p): ‘‘‘ This function has plenty of local minimum, with strong shocks global minimum at (0,0) with value 0 ‘‘‘ x1, x2 = p x = np.square(x1) + np.square(x2) return 0.5 + (np.sin(x) - 0.5) / np.square(1 + 0.001 * x)
第二步:运行遗传算法
from sko.GA import GA #2个变量,每代取50个,800次迭代,上下界及精度 ga = GA(func=schaffer, n_dim=2, size_pop=50, max_iter=800, lb=[-1, -1], ub=[1, 1], precision=1e-7) best_x, best_y = ga.run() print(‘best_x:‘, best_x, ‘\n‘, ‘best_y:‘, best_y)
第三步:画出结果
import pandas as pd import matplotlib.pyplot as plt Y_history = pd.DataFrame(ga.all_history_Y) fig, ax = plt.subplots(2, 1) ax[0].plot(Y_history.index, Y_history.values, ‘.‘, color=‘red‘) Y_history.min(axis=1).cummin().plot(kind=‘line‘) plt.show()
精度改成1就能视为整数规划。
只需要导入GA_TSP,它重载了crossover, mutation来解决TSP.
第一步:定义你的问题。准备你的点的坐标和距离矩阵。
这里使用随机数据作为Demo.
import numpy as np from scipy import spatial import matplotlib.pyplot as plt num_points = 50 points_coordinate = np.random.rand(num_points, 2) # generate coordinate of points distance_matrix = spatial.distance.cdist(points_coordinate, points_coordinate, metric=‘euclidean‘) def cal_total_distance(routine): ‘‘‘The objective function. input routine, return total distance. cal_total_distance(np.arange(num_points)) ‘‘‘ num_points, = routine.shape return sum([distance_matrix[routine[i % num_points], routine[(i + 1) % num_points]] for i in range(num_points)])
第二步:运行GA算法
from sko.GA import GA_TSP ga_tsp = GA_TSP(func=cal_total_distance, n_dim=num_points, size_pop=50, max_iter=500, prob_mut=1) best_points, best_distance = ga_tsp.run()
第三步:画出结果
fig, ax = plt.subplots(1, 2) best_points_ = np.concatenate([best_points, [best_points[0]]]) best_points_coordinate = points_coordinate[best_points_, :] ax[0].plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1], ‘o-r‘) ax[1].plot(ga_tsp.generation_best_Y) plt.show()