Sqoop 导数据到HDFS, 用Spark SQL进行查询

hanhan 2019-09-02

1. 启动HDFS:

cd /usr/local/hadoop-2.7.7/sbin

./start-dfs.sh

2.启动Yarn:
cd cd /usr/local/hadoop-2.7.7/sbin

./start-yarn.sh

3.启动Spark:
/usr/local/spark-2.3.3-bin-hadoop2.7/sbin

./start-master.sh -h 192.168.96.12

./start-slave.sh spark://192.168.96.128:7077

4.创建Sqoop导入任务:

./sqoop-job \

--meta-connect jdbc:hsqldb:hsql://192.168.96.128:16000/sqoop \

--create t_order_increment_job \

-- import --connect jdbc:mysql://192.168.96.1:3306/demo_ds_0?serverTimezone=Asia/Shanghai \

--username root -P \

--append \

--table t_order_increment \

--incremental lastmodified \

--check-column my_time \

--last-value '2019-08-30 21:36:16' \

--target-dir /increment/t_order_increment

5.执行导入任务:

./sqoop-job \

--meta-connect jdbc:hsqldb:hsql://192.168.96.128:16000/sqoop \

--exec t_order_increment_job 

6.Spark SQL进行查询的Java代码:

public class IncrementApplication {
    public static void main(String[] args) {
        SparkSession spark = SparkSession.builder()
                .appName("SparkApplication")
                .config("spark.master", "spark://192.168.96.128:7077")
                .config("spark.jars", "/usr/local/workspace/spark-test-1.0-SNAPSHOT-shaded.jar")
                .getOrCreate();
JavaRDD<Order> orderRdd = spark.read().text("hdfs://192.168.96.128:9000/increment/t_order_increment/").javaRDD().map(
                line -> {
                    Order order = new Order();
String[] items = line.getString(0).split(",");
Integer orderId = Integer.valueOf(items[0]);
order.setOrderId(orderId);
Integer userId = Integer.valueOf(items[1]);
order.setUserId(userId);
order.setStatus(items[2]);
                    return order;
}
            );
Dataset<Row> orderDataSet =  spark.createDataFrame(orderRdd, Order.class);
orderDataSet.createOrReplaceTempView("order");
Dataset<Row> sqlDF = spark.sql("SELECT * FROM order");
sqlDF.show();
}
}

附录:

删除HDFS文件的命令:

cd /usr/local/hadoop-2.7.7/bin

./hadoop dfs -rm -R /increment/*

相关推荐

硅步至千里 / 0评论 2020-04-19