yaohustiAC 2019-06-21
题目链接:https://leetcode.com/problems...
枚举所有可能的largest sum,找最小的那个,二分枚举优化复杂度,因为数组不含负数,根据largest sum是否满足条件可以二分结果。largest sum的范围是(sum(nums)/m, sum(nums)),找当前largest sum是否存在,判断存在的标准是:扫一遍array,看实现每个subarray的sum都<=当前largest sum的时候subarray的数量是否小于等于mm
,注意求数组sum要用long,防止溢出。
public class Solution { public int splitArray(int[] nums, int m) { long sum = 0; for(int num : nums) sum += num; // binary search, find the minimum valid sum long l = sum / m; long r = sum; while(l < r) { long mid = l + (r - l) / 2; boolean valid = isValidSplit(nums, m, mid); if(valid) r = mid; else l = mid + 1; } return (int) l; } private boolean isValidSplit(int[] nums, int m, long sum) { int i = 0, n = nums.length; // count the minimum number of split int count = 0; // prev sum long prev = 0; // loop invariant: prev = 0, count = minimum splits so far while(i < n) { if(nums[i] > sum) return false; while(i < n && prev + nums[i] <= sum) { prev += nums[i++]; } count++; if(count > m) return false; prev = 0; } return count <= m; } }
还有一种dp的做法:
https://discuss.leetcode.com/...
dp的subproblem是:dp[i][j]: split nums[0:i] into j parts
,
dp的方程是:dp[i][j] = min{ max{dp[k][j-1], sum(nums[k+1:i+1])} }
,
每个subproblem都遍历一遍可能的k,选择出最小的结果。注意由于array不含负数,dp[k-1] <= dp[k]
并且sum(nums[k:i+1]) >= sum(nums[k+1:i+1])
,相当于一条递增,一条递减的线找交点,极端情况没有交点结果出现在两端,所以依然可以binary search找dp[k] == sum(nums[k+1:i+1])
。