lybbb 2020-03-28
一、anaconda安装
bash ×××××.sh文件
二、虚拟环境
(1)conda env list 或 conda info -e:查看当前存在哪些虚拟环境,conda info --envs查所有环境
(2)conda create -n py36 python=3.6 创建虚拟环境 其中,py36为虚拟环境名称,
PS:本机anaconda环境需要root权限,因此权限非root时,会自动创建.conda文件夹存储虚拟环境。
PS:可同时安装必要的包conda create -n env_name numpy matplotlib python=3.6
(3)conda remove -n py36 --all 删除虚拟环境 ,py36为虚拟环境名称
(4)source activate yyl-tf 启动虚拟环境,yyl-tf为虚拟环境名称
(5)source deactivate 关闭虚拟环境
(6)conda create -n py36 --clone yyl-tf 克隆创建虚拟环境
(7)conda remove --name $your_env_name $package_name(包名)删除虚拟环境中的包:
三、Tensorflow-GPU安装
(1)conda search tensorflow-gpu查看有哪些版本可以安装
(2)conda install tensorflow-gpu keras-gpu(由于我要配置object detect api,有用到keras)
PS:相关软件包被安装至python->lib->site-packages下面
PS: 如果有些安装包无法查找,可以使用conda install -c conda-forge ****
(3)其他更详细的信息推荐这篇博文https://blog.csdn.net/weixin_39954229/article/details/79961172
四、配置object detection api
(1)下载地址https://github.com/tensorflow/models
(2)解压至python->lib->site-packages->tensorflow下,可能会用的的命令 unzip a.zip /home/***解压文件包;mv models-master models重命名
(3)进入models->research目录编译proto文件,生成.py文件
protoc object_detection/protos/*.proto --python_out=.
(4)tensorflow/models/research/ 和 slim 目录 需要添加到PYTHONPATH环境变量中. 从终端中,切换到tensorflow/models /research/目录,执行:
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
注意: 这条命令在新打开的终端中需要重新执行一次才会在新终端中生效,如果不想那么麻烦,就用下面的命令编辑 gedit ~/.bashrc 文件,把上面的语句添加到末尾.
参考博文https://blog.csdn.net/chenmaolin88/article/details/79371891
(5)测试python object_detection/builders/model_builder_test.py
(6)报错ModuleNotFoundError: No module named ‘absl‘
执行 conda install absl-py
(7)报错AttributeError: module ‘tensorflow‘ has no attribute ‘keras‘
据说是keras和tensorflow的版本问题,
conda remove keras-gpu先删除版本
扒了一圈各大大神说法,最后搭载tensorflow-gpu1.9.0+keras2.0.2,测试通过。
(8)更换conda的源镜像
重新安装时cudnn7.0下载非常慢,于是乎更换conda的源镜像试试,添加国内源:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --set show_channel_urls yes
换回默认源:
conda config --remove-key channels
在执行conda config 命令的时候,会在当前用户目录下创建 ~/.condarc文件,可以查看更换源前后该文件内容的变化。
查看源的详细信息:
conda config --show
在更改源后,安装某些软件包时可能还会提示.Could not connect to https://repo.continuum.io/pkgs/pro/linux-64/
用上述的方法在default_channels中添加
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
————————————————
版权声明:本文为CSDN博主「余小猪」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/yuzaizhu/java/article/details/88744560
实际上 pip install python3/ 也可以 ,此处需要用他自己 cmd 客户端 , 别选错了 .打开有个 . 这样的原理是虽然你不是用的 > conda install python3/