87682715 2019-07-01
本文将分析Prometheus的常见配置与服务发现,分为概述、配置详解、服务发现、常见场景四个部分进行讲解。
Prometheus的配置可以用命令行参数、或者配置文件,如果是在k8s集群内,一般配置在configmap中(以下均为prometheus2.7版本)
查看可用的命令行参数,可以执行 ./prometheus -h
也可以指定对应的配置文件,参数:--config.file 一般为prometheus.yml
如果配置有修改,如增添采集job,Prometheus可以重新加载它的配置。只需要向其
进程发送SIGHUP或向/-/reload端点发送HTTP POST请求。如:
curl -X POST http://localhost:9090/-/reload
执行./prometheus -h 可以看到各个参数的含义,例如:
--web.listen-address="0.0.0.0:9090" 监听端口默认为9090,可以修改只允许本机访问,或者为了安全起见,可以改变其端口号(默认的web服务没有鉴权) --web.max-connections=512 默认最大连接数:512 --storage.tsdb.path="data/" 默认的存储路径:data目录下 --storage.tsdb.retention.time=15d 默认的数据保留时间:15天。原有的storage.tsdb.retention配置已经被废弃 --alertmanager.timeout=10s 把报警发送给alertmanager的超时限制 10s --query.timeout=2m 查询超时时间限制默认为2min,超过自动被kill掉。可以结合grafana的限时配置如60s --query.max-concurrency=20 并发查询数 prometheus的默认采集指标中有一项prometheus_engine_queries_concurrent_max可以拿到最大查询并发数及查询情况 --log.level=info 日志打印等级一共四种:[debug, info, warn, error],如果调试属性可以先改为debug等级 .....
在prometheus的页面上,status的Command-Line Flags中,可以看到当前配置,如promethues-operator的配置是:
从官方的download页下载的promethues二进制文件,会自带一份默认配置prometheus.yml
-rw-r--r--@ LICENSE -rw-r--r--@ NOTICE drwxr-xr-x@ console_libraries drwxr-xr-x@ consoles -rwxr-xr-x@ prometheus -rw-r--r--@ prometheus.yml -rwxr-xr-x@ promtool
prometheus.yml配置了很多属性,包括远程存储、报警配置等很多内容,下面将对主要属性进行解释:
# 默认的全局配置 global: scrape_interval: 15s # 采集间隔15s,默认为1min一次 evaluation_interval: 15s # 计算规则的间隔15s默认为1min一次 scrape_timeout: 10s # 采集超时时间,默认为10s external_labels: # 当和其他外部系统交互时的标签,如远程存储、联邦集群时 prometheus: monitoring/k8s # 如:prometheus-operator的配置 prometheus_replica: prometheus-k8s-1 # Alertmanager的配置 alerting: alertmanagers: - static_configs: - targets: - 127.0.0.1:9093 # alertmanager的服务地址,如127.0.0.1:9093 alert_relabel_configs: # 在抓取之前对任何目标及其标签进行修改。 - separator: ; regex: prometheus_replica replacement: $1 action: labeldrop # 一旦加载了报警规则文件,将按照evaluation_interval即15s一次进行计算,rule文件可以有多个 rule_files: # - "first_rules.yml" # - "second_rules.yml" # scrape_configs为采集配置,包含至少一个job scrape_configs: # Prometheus的自身监控 将在采集到的时间序列数据上打上标签job=xx - job_name: 'prometheus' # 采集指标的默认路径为:/metrics,如 localhost:9090/metric # 协议默认为http static_configs: - targets: ['localhost:9090'] # 远程读,可选配置,如将监控数据远程读写到influxdb的地址,默认为本地读写 remote_write: 127.0.0.1:8090 # 远程写 remote_read: 127.0.0.1:8090
prometheus的配置中,最常用的就是scrape_configs配置,比如添加新的监控项,修改原有监控项的地址频率等。
最简单配置为:
scrape_configs: - job_name: prometheus metrics_path: /metrics scheme: http static_configs: - targets: - localhost:9090
完整配置为(附prometheus-operator的推荐配置):
# job 将以标签形式出现在指标数据中,如node-exporter采集的数据,job=node-exporter job_name: node-exporter # 采集频率:30s scrape_interval: 30s # 采集超时:10s scrape_timeout: 10s # 采集对象的path路径 metrics_path: /metrics # 采集协议:http或者https scheme: https # 可选的采集url的参数 params: name: demo # 当自定义label和采集到的自带label冲突时的处理方式,默认冲突时会重名为exported_xx honor_labels: false # 当采集对象需要鉴权才能获取时,配置账号密码等信息 basic_auth: username: admin password: admin password_file: /etc/pwd # bearer_token或者文件位置(OAuth 2.0鉴权) bearer_token: kferkhjktdgjwkgkrwg bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token # https的配置,如跳过认证,或配置证书文件 tls_config: # insecure_skip_verify: true ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt server_name: kubernetes insecure_skip_verify: false # 代理地址 proxy_url: 127.9.9.0:9999 # Azure的服务发现配置 azure_sd_configs: # Consul的服务发现配置 consul_sd_configs: # DNS的服务发现配置 dns_sd_configs: # EC2的服务发现配置 ec2_sd_configs: # OpenStack的服务发现配置 openstack_sd_configs: # file的服务发现配置 file_sd_configs: # GCE的服务发现配置 gce_sd_configs: # Marathon的服务发现配置 marathon_sd_configs: # AirBnB的服务发现配置 nerve_sd_configs: # Zookeeper的服务发现配置 serverset_sd_configs: # Triton的服务发现配置 triton_sd_configs: # Kubernetes的服务发现配置 kubernetes_sd_configs: - role: endpoints namespaces: names: - monitoring # 对采集对象进行一些静态配置,如打特定的标签 static_configs: - targets: ['localhost:9090', 'localhost:9191'] labels: my: label your: label # 在Prometheus采集数据之前,通过Target实例的Metadata信息,动态重新写入Label的值。 如将原始的__meta_kubernetes_namespace直接写成namespace,简洁明了 relabel_configs: - source_labels: [__meta_kubernetes_namespace] separator: ; regex: (.*) target_label: namespace replacement: $1 action: replace - source_labels: [__meta_kubernetes_service_name] separator: ; regex: (.*) target_label: service replacement: $1 action: replace - source_labels: [__meta_kubernetes_pod_name] separator: ; regex: (.*) target_label: pod replacement: $1 action: replace - source_labels: [__meta_kubernetes_service_name] separator: ; regex: (.*) target_label: job replacement: ${1} action: replace - separator: ; regex: (.*) target_label: endpoint replacement: web action: replace # 指标relabel的配置,如丢掉某些无用的指标 metric_relabel_configs: - source_labels: [__name__] separator: ; regex: etcd_(debugging|disk|request|server).* replacement: $1 action: drop # 限制最大采集样本数,超过了采集将会失败,默认为0不限制 sample_limit: 0
上边的配置文件中,有很多*_sd_configs的配置,如kubernetes_sd_configs,就是用于服务发现的采集配置。
支持的服务发现类型:
// prometheus/discovery/config/config.go type ServiceDiscoveryConfig struct { StaticConfigs []*targetgroup.Group `yaml:"static_configs,omitempty"` DNSSDConfigs []*dns.SDConfig `yaml:"dns_sd_configs,omitempty"` FileSDConfigs []*file.SDConfig `yaml:"file_sd_configs,omitempty"` ConsulSDConfigs []*consul.SDConfig `yaml:"consul_sd_configs,omitempty"` ServersetSDConfigs []*zookeeper.ServersetSDConfig `yaml:"serverset_sd_configs,omitempty"` NerveSDConfigs []*zookeeper.NerveSDConfig `yaml:"nerve_sd_configs,omitempty"` MarathonSDConfigs []*marathon.SDConfig `yaml:"marathon_sd_configs,omitempty"` KubernetesSDConfigs []*kubernetes.SDConfig `yaml:"kubernetes_sd_configs,omitempty"` GCESDConfigs []*gce.SDConfig `yaml:"gce_sd_configs,omitempty"` EC2SDConfigs []*ec2.SDConfig `yaml:"ec2_sd_configs,omitempty"` OpenstackSDConfigs []*openstack.SDConfig `yaml:"openstack_sd_configs,omitempty"` AzureSDConfigs []*azure.SDConfig `yaml:"azure_sd_configs,omitempty"` TritonSDConfigs []*triton.SDConfig `yaml:"triton_sd_configs,omitempty"` }
因为prometheus采用的是pull方式来拉取监控数据,这种方式需要由server侧决定采集的目标有哪些,即配置在scrape_configs中的各种job,pull方式的主要缺点就是无法动态感知新服务的加入,因此大多数监控都默认支持服务发现机制,自动发现集群中的新端点,并加入到配置中。
Prometheus支持多种服务发现机制:文件,DNS,Consul,Kubernetes,OpenStack,EC2等等。基于服务发现的过程并不复杂,通过第三方提供的接口,Prometheus查询到需要监控的Target列表,然后轮询这些Target获取监控数据。
对于kubernetes而言,Promethues通过与Kubernetes API交互,然后轮询资源端点。目前主要支持5种服务发现模式,分别是:Node、Service、Pod、Endpoints、Ingress。对应配置文件中的role: node/role:service
如:动态获取所有节点node的信息,可以添加如下配置:
- job_name: kubernetes-nodes scrape_interval: 1m scrape_timeout: 10s metrics_path: /metrics scheme: https kubernetes_sd_configs: - api_server: null role: node namespaces: names: [] bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt insecure_skip_verify: true relabel_configs: - separator: ; regex: __meta_kubernetes_node_label_(.+) replacement: $1 action: labelmap - separator: ; regex: (.*) target_label: __address__ replacement: kubernetes.default.svc:443 action: replace - source_labels: [__meta_kubernetes_node_name] separator: ; regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes/${1}/proxy/metrics action: replace
就可以在target中看到具体内容
对应的service、pod也是同样的方式。
需要注意的是,为了能够让Prometheus能够访问收到Kubernetes API,我们要对Prometheus进行访问授权,即serviceaccount。否则就算配置了,也没有权限获取。
prometheus的权限配置是一组ClusterRole+ClusterRoleBinding+ServiceAccount,然后在deployment或statefulset中指定serviceaccount。
ClusterRole.yaml
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: namespace: kube-system name: prometheus rules: - apiGroups: [""] resources: - configmaps - secrets - nodes - pods - nodes/proxy - services - resourcequotas - replicationcontrollers - limitranges - persistentvolumeclaims - persistentvolumes - namespaces - endpoints verbs: ["get", "list", "watch"] - apiGroups: ["extensions"] resources: - daemonsets - deployments - replicasets - ingresses verbs: ["get", "list", "watch"] - apiGroups: ["apps"] resources: - daemonsets - deployments - replicasets - statefulsets verbs: ["get", "list", "watch"] - apiGroups: ["batch"] resources: - cronjobs - jobs verbs: ["get", "list", "watch"] - apiGroups: ["autoscaling"] resources: - horizontalpodautoscalers verbs: ["get", "list", "watch"] - apiGroups: ["policy"] resources: - poddisruptionbudgets verbs: ["get", list", "watch"] - nonResourceURLs: ["/metrics"] verbs: ["get"]
ClusterRoleBinding.yaml
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: namespace: kube-system name: prometheus roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: prometheus subjects: - kind: ServiceAccount name: prometheus namespace: kube-system
ServiceAccount.yaml
apiVersion: v1 kind: ServiceAccount metadata: namespace: kube-system name: prometheus
prometheus.yaml
.... spec: serviceAccountName: prometheus ....
完整的kubernete的配置如下:
- job_name: kubernetes-apiservers scrape_interval: 1m scrape_timeout: 10s metrics_path: /metrics scheme: https kubernetes_sd_configs: - api_server: null role: endpoints namespaces: names: [] bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt insecure_skip_verify: true relabel_configs: - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name] separator: ; regex: default;kubernetes;https replacement: $1 action: keep - job_name: kubernetes-nodes scrape_interval: 1m scrape_timeout: 10s metrics_path: /metrics scheme: https kubernetes_sd_configs: - api_server: null role: node namespaces: names: [] bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt insecure_skip_verify: true relabel_configs: - separator: ; regex: __meta_kubernetes_node_label_(.+) replacement: $1 action: labelmap - separator: ; regex: (.*) target_label: __address__ replacement: kubernetes.default.svc:443 action: replace - source_labels: [__meta_kubernetes_node_name] separator: ; regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes/${1}/proxy/metrics action: replace - job_name: kubernetes-cadvisor scrape_interval: 1m scrape_timeout: 10s metrics_path: /metrics scheme: https kubernetes_sd_configs: - api_server: null role: node namespaces: names: [] bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt insecure_skip_verify: false relabel_configs: - separator: ; regex: __meta_kubernetes_node_label_(.+) replacement: $1 action: labelmap - separator: ; regex: (.*) target_label: __address__ replacement: kubernetes.default.svc:443 action: replace - source_labels: [__meta_kubernetes_node_name] separator: ; regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor action: replace - job_name: kubernetes-service-endpoints scrape_interval: 1m scrape_timeout: 10s metrics_path: /metrics scheme: http kubernetes_sd_configs: - api_server: null role: endpoints namespaces: names: [] relabel_configs: - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape] separator: ; regex: "true" replacement: $1 action: keep - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme] separator: ; regex: (https?) target_label: __scheme__ replacement: $1 action: replace - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path] separator: ; regex: (.+) target_label: __metrics_path__ replacement: $1 action: replace - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port] separator: ; regex: ([^:]+)(?::\d+)?;(\d+) target_label: __address__ replacement: $1:$2 action: replace - separator: ; regex: __meta_kubernetes_service_label_(.+) replacement: $1 action: labelmap - source_labels: [__meta_kubernetes_namespace] separator: ; regex: (.*) target_label: kubernetes_namespace replacement: $1 action: replace - source_labels: [__meta_kubernetes_service_name] separator: ; regex: (.*) target_label: kubernetes_name replacement: $1 action: replace
配置成功后,对应的target是:
如使用k8s的role:node采集集群中node的数据,可以通过"meta_domain_beta_kubernetes_io_zone"标签来获取到该节点的地域,该label为集群创建时为node打上的标记,kubectl decribe node可以看到。
然后可以通过relabel_configs定义新的值
relabel_configs: - source_labels: ["meta_domain_beta_kubernetes_io_zone"] regex: "(.*)" replacement: $1 action: replace target_label: "zone"
后面可以直接通过node{zone="XX"}来进行地域筛选
对于不同职能(开发、测试、运维)的人员可能只关心其中一部分的监控数据,他们可能各自部署的自己的Prometheus Server用于监控自己关心的指标数据,不必要的数据需要过滤掉,以免浪费资源,可以最类似配置;
metric_relabel_configs: - source_labels: [__name__] separator: ; regex: etcd_(debugging|disk|request|server).* replacement: $1 action: drop
action: drop代表丢弃掉符合条件的指标,不进行采集。
如果存在多个地域,每个地域又有很多节点或者集群,可以采用默认的联邦集群部署,每个地域部署自己的prometheus server实例,采集自己地域的数据。然后由统一的server采集所有地域数据,进行统一展示,并按照地域归类
配置:
scrape_configs: - job_name: 'federate' scrape_interval: 15s honor_labels: true metrics_path: '/federate' params: 'match[]': - '{job="prometheus"}' - '{__name__=~"job:.*"}' - '{__name__=~"node.*"}' static_configs: - targets: - '192.168.77.11:9090' - '192.168.77.12:9090'
本文为容器监控实践系列文章,完整内容见:container-monitor-book