waitui00 2019-12-19
1.ArrayList是最常用的List实现类,内部是通过数组实现的,它允许对元素进行快速随机访问。数组的缺点是每个元素之间不能有间隔,当数组大小不满足时需要增加存储能力,就要讲已经有数组的数据复制到新的存储空间中。当从ArrayList的中间位置插入或者删除元素时,需要对数组进行复制、移动、代价比较高。因此,它适合随机查找和遍历,不适合插入和删除。
2.Vector与ArrayList一样,也是通过数组实现的,不同的是它支持线程的同步,即某一时刻只有一个线程能够写Vector,避免多线程同时写而引起的不一致性,但实现同步需要很高的花费,因此,访问它比访问ArrayList慢
注意: Vector线程安全、ArrayList
1.HashMap不是线程安全的
HastMap是一个接口 是map接口的子接口,是将键映射到值的对象,其中键和值都是对象,并且不能包含重复键,但可以包含重复值。HashMap允许null key和null value,而hashtable不允许。
2.HashTable是线程安全的一个Collection。
3.HashMap是Hashtable的轻量级实现(非线程安全的实现),他们都完成了Map接口,主要区别在于HashMap允许空(null)键值(key),由于非线程安全,效率上可能高于Hashtable。
HashMap允许将null作为一个entry的key或者value,而Hashtable不允许。
HashMap把Hashtable的contains方法去掉了,改成containsvalue和containsKey。
注意: HashTable线程安全,HashMap线程不安全。
Collections.synchronized*(m) 将线程不安全额集合变为线程安全集合
ConcurrentMap接口下有俩个重要的实现 :
ConcurrentHashMap
ConcurrentskipListMap (支持并发排序功能。弥补ConcurrentHas hMa p)
ConcurrentHashMap内部使用段(Segment)来表示这些不同的部分,每个段其实就是一个
小的HashTable,它们有自己的锁。只要多个修改操作发生在不同的段上,它们就可以并
发进行。把一个整体分成了16个段(Segment.也就是最高支持16个线程的并发修改操作。
这也是在重线程场景时减小锁的粒度从而降低锁竞争的一种方案。并且代码中大多共享变
量使用volatile关键字声明,目的是第一时间获取修改的内容,性能非常好。
public class Test002 { public static void main(String[] args) throws InterruptedException { System.out.println("等待子线程执行完毕..."); CountDownLatch countDownLatch = new CountDownLatch(2); new Thread(new Runnable() { @Override public void run() { System.out.println("子线程," + Thread.currentThread().getName() + "开始执行..."); countDownLatch.countDown();// 每次减去1 System.out.println("子线程," + Thread.currentThread().getName() + "结束执行..."); } }).start(); new Thread(new Runnable() { @Override public void run() { System.out.println("子线程," + Thread.currentThread().getName() + "开始执行..."); countDownLatch.countDown(); System.out.println("子线程," + Thread.currentThread().getName() + "结束执行..."); } }).start(); countDownLatch.await();// 调用当前方法主线程阻塞 countDown结果为0, 阻塞变为运行状态 System.out.println("两个子线程执行完毕...."); System.out.println("继续主线程执行.."); } }
CyclicBarrier初始化时规定一个数目,然后计算调用了CyclicBarrier.await()进入等待的线程数。当线程数达到了这个数目时,所有进入等待状态的线程被唤醒并继续。
CyclicBarrier就象它名字的意思一样,可看成是个障碍, 所有的线程必须到齐后才能一起通过这个障碍。
class Writer extends Thread { private CyclicBarrier cyclicBarrier; public Writer(CyclicBarrier cyclicBarrier){ this.cyclicBarrier=cyclicBarrier; } @Override public void run() { System.out.println("线程" + Thread.currentThread().getName() + ",正在写入数据"); try { Thread.sleep(3000); } catch (Exception e) { // TODO: handle exception } System.out.println("线程" + Thread.currentThread().getName() + ",写入数据成功....."); try { cyclicBarrier.await(); } catch (Exception e) { } System.out.println("所有线程执行完毕.........."); } } public class Test001 { public static void main(String[] args) { CyclicBarrier cyclicBarrier=new CyclicBarrier(5); for (int i = 0; i < 5; i++) { Writer writer = new Writer(cyclicBarrier); writer.start(); } } }
Semaphore是一种基于计数的信号量。它可以设定一个阈值,基于此,多个线程竞争获取许可信号,做自己的申请后归还,超过阈值后,线程申请许可信号将会被阻塞。Semaphore可以用来构建一些对象池,资源池之类的,比如数据库连接池,我们也可以创建计数为1的Semaphore,将其作为一种类似互斥锁的机制,这也叫二元信号量,表示两种互斥状态。它的用法如下:
availablePermits函数用来获取当前可用的资源数量
wc.acquire(); //申请资源
wc.release();// 释放资源
// 创建一个计数阈值为5的信号量对象 // 只能5个线程同时访问 Semaphore semp = new Semaphore(5); try { // 申请许可 semp.acquire(); try { // 业务逻辑 } catch (Exception e) { } finally { // 释放许可 semp.release(); } } catch (InterruptedException e) { }
案例:
需求: 一个厕所只有3个坑位,但是有10个人来上厕所,那怎么办?假设10的人的编号分别为1-10,并且1号先到厕所,10号最后到厕所。那么1-3号来的时候必然有可用坑位,顺利如厕,4号来的时候需要看看前面3人是否有人出来了,如果有人出来,进去,否则等待。同样的道理,4-10号也需要等待正在上厕所的人出来后才能进去,并且谁先进去这得看等待的人是否有素质,是否能遵守先来先上的规则。
代码:
class Parent implements Runnable { private String name; private Semaphore wc; public Parent(String name,Semaphore wc){ this.name=name; this.wc=wc; } @Override public void run() { try { // 剩下的资源(剩下的茅坑) int availablePermits = wc.availablePermits(); if (availablePermits > 0) { System.out.println(name+"天助我也,终于有茅坑了..."); } else { System.out.println(name+"怎么没有茅坑了..."); } //申请茅坑 如果资源达到3次,就等待 wc.acquire(); System.out.println(name+"终于轮我上厕所了..爽啊"); Thread.sleep(new Random().nextInt(1000)); // 模拟上厕所时间。 System.out.println(name+"厕所上完了..."); wc.release(); } catch (Exception e) { } } } public class TestSemaphore02 { public static void main(String[] args) { // 一个厕所只有3个坑位,但是有10个人来上厕所,那怎么办?假设10的人的编号分别为1-10,并且1号先到厕所,10号最后到厕所。那么1-3号来的时候必然有可用坑位,顺利如厕,4号来的时候需要看看前面3人是否有人出来了,如果有人出来,进去,否则等待。同样的道理,4-10号也需要等待正在上厕所的人出来后才能进去,并且谁先进去这得看等待的人是否有素质,是否能遵守先来先上的规则。 Semaphore semaphore = new Semaphore(3); for (int i = 1; i <=10; i++) { Parent parent = new Parent("第"+i+"个人,",semaphore); new Thread(parent).start(); } } }