zhuzhishi0 2019-06-28
TensorFlow是一个开放源代码软件库,用于进行高性能数值计算。借助其灵活的架构,用户可以轻松地将计算工作部署到多种平台(CPU、GPU、TPU)和设备(桌面设备、服务器集群、移动设备、边缘设备等)。TensorFlow最初是由 Google Brain 团队中的研究人员和工程师开发的,可为机器学习和深度学习提供强力支持,并且其灵活的数值计算核心广泛应用于许多其他科学领域。
京东云GPU云主机提供实时高速,提供卓越的并行计算及浮点计算能力,快速构建异构计算应用。基于GPU的高效计算服务,适用于人工智能、图像处理等多领域场景。
基于京东云GPU云主机搭建TensorFlow深度学习环境的大致步骤如下:
操作系统:Ubuntu 16.04 64位
GPU: 1 x Nvidia Tesla P40
安装pip、virtualenv:
# curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py # python3 get-pip.py # pip3 --version pip 18.1 from /usr/local/lib/python3.5/dist-packages/pip (python 3.5) # sudo pip install virtualenv # virtualenv --version 16.0.0 # python3 --version Python 3.5.2
安装python3-dev、python3-pip:
# sudo apt install python3-dev python3-pip
安装gcc:
# sudo apt-get install gcc # gcc --version gcc (Ubuntu 5.4.0-6ubuntu1~16.04.10) 5.4.0 20160609 Copyright (C) 2015 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
如果没有,需安装linux-headers:
# sudo apt-get install linux-headers-$(uname -r)
禁用Ubuntu自带Nouveau驱动:
# lsmod | grep nouveau nouveau 1495040 0 mxm_wmi16384 1 nouveau wmi20480 2 mxm_wmi,nouveau video 40960 1 nouveau i2c_algo_bit 16384 1 nouveau ttm94208 1 nouveau drm_kms_helper155648 1 nouveau drm 364544 3 ttm,drm_kms_helper,nouveau # vi /etc/modprobe.d/blacklist-nouveau.conf blacklist nouveau options nouveau modeset=0 # sudo update-initramfs -u update-initramfs: Generating /boot/initrd.img-4.4.0-62-generic W: mdadm: /etc/mdadm/mdadm.conf defines no arrays.
注:Nouveau驱动与NVIDIA驱动冲突,只有在禁用掉Nouveau后才能顺利安装NVIDIA驱动
Reboot云主机:
# reboot
重启后确认Nouveau drivers没有被加载:
# lsmod | grep nouveau #
登录官网下载页面:https://www.nvidia.com/drivers
选择相应的Driver版本:
查询到对应的版本为 “396.44”:
下载驱动到本地:
# wget http://us.download.nvidia.com/tesla/396.44/nvidia-diag-driver-local-repo-ubuntu1604-396.44_1.0-1_amd64.deb
下载完成后安装package repository:
# sudo dpkg -i nvidia-diag-driver-local-repo-ubuntu1604-396.44_1.0-1_amd64.deb Selecting previously unselected package nvidia-diag-driver-local-repo-ubuntu1604-396.44. (Reading database ... 112453 files and directories currently installed.) Preparing to unpack nvidia-diag-driver-local-repo-ubuntu1604-396.44_1.0-1_amd64.deb ... Unpacking nvidia-diag-driver-local-repo-ubuntu1604-396.44 (1.0-1) ... Setting up nvidia-diag-driver-local-repo-ubuntu1604-396.44 (1.0-1) ... The public CUDA GPG key does not appear to be installed. To install the key, run this command: sudo apt-key add /var/nvidia-diag-driver-local-repo-396.44/7fa2af80.pub # sudo apt-key add /var/nvidia-diag-driver-local-repo-396.44/7fa2af80.pub OK # sudo apt-get update
安装驱动:
# sudo apt-get install cuda-drivers
验证是否安装成功:
# sudo dpkg -l | grep nvidia ii nvidia-396 396.44-0ubuntu1 amd64 NVIDIA binary driver - version 396.44 ii nvidia-396-dev 396.44-0ubuntu1 amd64 NVIDIA binary Xorg driver development files ii nvidia-diag-driver-local-repo-ubuntu1604-396.44 1.0-1 amd64 nvidia-diag-driver-local repository configuration files ii nvidia-modprobe 396.44-0ubuntu1 amd64 Load the NVIDIA kernel driver and create device files ii nvidia-opencl-icd-396 396.44-0ubuntu1 amd64 NVIDIA OpenCL ICD ii nvidia-prime 0.8.2 amd64 Tools to enable NVIDIA's Prime ii nvidia-settings 396.44-0ubuntu1 amd64 Tool for configuring the NVIDIA graphics driver # cat /proc/driver/nvidia/version NVRM version: NVIDIA UNIX x86_64 Kernel Module 396.44 Wed Jul 11 16:51:49 PDT 2018 GCC version: gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.10)
查看GPU信息:
# nvidia-smi Tue Oct 30 15:15:11 2018 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 396.44 Driver Version: 396.44 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla P40 Off | 00000000:00:07.0 Off | 0 | | N/A 25C P0 45W / 250W | 0MiB / 22919MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+
CUDA 是 NVIDIA 创造的一个并行计算平台和编程模型。它利用图形处理器 (GPU) 能力,实现计算性能的显著提高。
TensorFlow暂不支持CUDA 10.0,本文选择安装CUDA 9.0。
CUDA Toolkit安装有两种方式:
本文选择Package方式安装。
官网下载deb包:
https://developer.nvidia.com/...
下载deb包到本地:
# wget https://developer.nvidia.com/compute/cuda/9.0/Prod/local_installers/cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64-deb # ls cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64-deb
安装repository并update:
# sudo dpkg -i cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64-deb Selecting previously unselected package cuda-repo-ubuntu1604-9-0-local. (Reading database ... 117383 files and directories currently installed.) Preparing to unpack cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64-deb ... Unpacking cuda-repo-ubuntu1604-9-0-local (9.0.176-1) ... Setting up cuda-repo-ubuntu1604-9-0-local (9.0.176-1) ... The public CUDA GPG key does not appear to be installed. To install the key, run this command: sudo apt-key add /var/cuda-repo-9-0-local/7fa2af80.pub # sudo apt-key add /var/cuda-repo-9-0-local/7fa2af80.pub OK # sudo apt-get update
开始安装cuda toolkit:
# sudo apt-get install cuda
安装完成需等待几分钟。
查看CUDA:
# sudo dpkg -l | grep -i cuda ii cuda 9.0.176-1 amd64 CUDA meta-package ii cuda-9-0 9.0.176-1 amd64 CUDA 9.0 meta-package ii cuda-command-line-tools-9-0 9.0.176-1 amd64 CUDA command-line tools ii cuda-core-9-0 9.0.176-1 amd64 CUDA core tools ii cuda-cublas-9-0 9.0.176-1 amd64 CUBLAS native runtime libraries ii cuda-cublas-dev-9-0 9.0.176-1 amd64 CUBLAS native dev links, headers ii cuda-cudart-9-0 9.0.176-1 amd64 CUDA Runtime native Libraries ii cuda-cudart-dev-9-0 9.0.176-1 amd64 CUDA Runtime native dev links, headers ii cuda-cufft-9-0 9.0.176-1 amd64 CUFFT native runtime libraries ii cuda-cufft-dev-9-0 9.0.176-1 amd64 CUFFT native dev links, headers ii cuda-curand-9-0 9.0.176-1 amd64 CURAND native runtime libraries ii cuda-curand-dev-9-0 9.0.176-1 amd64 CURAND native dev links, headers ii cuda-cusolver-9-0 9.0.176-1 amd64 CUDA solver native runtime libraries ii cuda-cusolver-dev-9-0 9.0.176-1 amd64 CUDA solver native dev links, headers ii cuda-cusparse-9-0 9.0.176-1 amd64 CUSPARSE native runtime libraries ii cuda-cusparse-dev-9-0 9.0.176-1 amd64 CUSPARSE native dev links, headers ii cuda-demo-suite-9-0 9.0.176-1 amd64 Demo suite for CUDA ii cuda-documentation-9-0 9.0.176-1 amd64 CUDA documentation ii cuda-driver-dev-9-0 9.0.176-1 amd64 CUDA Driver native dev stub library ii cuda-drivers 396.44-1 amd64 CUDA Driver meta-package ii cuda-libraries-9-0 9.0.176-1 amd64 CUDA Libraries 9.0 meta-package ii cuda-libraries-dev-9-0 9.0.176-1 amd64 CUDA Libraries 9.0 development meta-package ii cuda-license-9-0 9.0.176-1 amd64 CUDA licenses ii cuda-misc-headers-9-0 9.0.176-1 amd64 CUDA miscellaneous headers ii cuda-npp-9-0 9.0.176-1 amd64 NPP native runtime libraries ii cuda-npp-dev-9-0 9.0.176-1 amd64 NPP native dev links, headers ii cuda-nvgraph-9-0 9.0.176-1 amd64 NVGRAPH native runtime libraries ii cuda-nvgraph-dev-9-0 9.0.176-1 amd64 NVGRAPH native dev links, headers ii cuda-nvml-dev-9-0 9.0.176-1 amd64 NVML native dev links, headers ii cuda-nvrtc-9-0 9.0.176-1 amd64 NVRTC native runtime libraries ii cuda-nvrtc-dev-9-0 9.0.176-1 amd64 NVRTC native dev links, headers ii cuda-repo-ubuntu1604-9-0-local 9.0.176-1 amd64 cuda repository configuration files ii cuda-runtime-9-0 9.0.176-1 amd64 CUDA Runtime 9.0 meta-package ii cuda-samples-9-0 9.0.176-1 amd64 CUDA example applications ii cuda-toolkit-9-0 9.0.176-1 amd64 CUDA Toolkit 9.0 meta-package ii cuda-visual-tools-9-0 9.0.176-1 amd64 CUDA visual tools ii libcuda1-396 396.44-0ubuntu1 amd64 NVIDIA CUDA runtime library
给CUDA打补丁(共四个):
# wget https://developer.nvidia.com/compute/cuda/9.0/Prod/patches/1/cuda-repo-ubuntu1604-9-0-local-cublas-performance-update_1.0-1_amd64-deb # wget https://developer.nvidia.com/compute/cuda/9.0/Prod/patches/2/cuda-repo-ubuntu1604-9-0-local-cublas-performance-update-2_1.0-1_amd64-deb # wget https://developer.nvidia.com/compute/cuda/9.0/Prod/patches/3/cuda-repo-ubuntu1604-9-0-local-cublas-performance-update-3_1.0-1_amd64-deb # wget https://developer.nvidia.com/compute/cuda/9.0/Prod/patches/4/cuda-repo-ubuntu1604-9-0-176-local-patch-4_1.0-1_amd64-deb # sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update_1.0-1_amd64-deb # sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update-2_1.0-1_amd64-deb # sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update-3_1.0-1_amd64-deb # sudo dpkg -i cuda-repo-ubuntu1604-9-0-176-local-patch-4_1.0-1_amd64-deb
Update:
# sudo apt-get update
升级:
# sudo apt-get upgrade cuda
环境变量配置:
# vi /etc/profile ...... export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} # source /etc/profile
# nvcc --version nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2017 NVIDIA Corporation Built on Fri_Sep__1_21:08:03_CDT_2017 Cuda compilation tools, release 9.0, V9.0.176
Samples示例安装(安装到当前目录):
# cuda-install-samples-9.0.sh . Copying samples to ./NVIDIA_CUDA-9.0_Samples now... Finished copying samples. # ls NVIDIA_CUDA-9.0_Samples/ 0_Simple 2_Graphics 4_Finance 6_Advanced common Makefile 1_Utilities 3_Imaging 5_Simulations 7_CUDALibraries EULA.txt
使用deviceQuery示例验证:
# cd NVIDIA_CUDA-9.0_Samples/1_Utilities/deviceQuery # ls deviceQuery.cpp Makefile NsightEclipse.xml readme.txt # make /usr/local/cuda-9.0/bin/nvcc -ccbin g++ -I../../common/inc -m64 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_70,code=compute_70 -o deviceQuery.o -c deviceQuery.cpp /usr/local/cuda-9.0/bin/nvcc -ccbin g++ -m64 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_70,code=compute_70 -o deviceQuery deviceQuery.o mkdir -p ../../bin/x86_64/linux/release cp deviceQuery ../../bin/x86_64/linux/release # cd ../../bin/x86_64/linux/release/ # ls deviceQuery
运行:
# ./deviceQuery ./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 1 CUDA Capable device(s) Device 0: "Tesla P40" CUDA Driver Version / Runtime Version 9.2 / 9.0 CUDA Capability Major/Minor version number: 6.1 Total amount of global memory: 22919 MBytes (24032378880 bytes) (30) Multiprocessors, (128) CUDA Cores/MP: 3840 CUDA Cores GPU Max Clock rate: 1531 MHz (1.53 GHz) Memory Clock rate: 3615 Mhz Memory Bus Width: 384-bit L2 Cache Size: 3145728 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 0 / 7 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 9.2, CUDA Runtime Version = 9.0, NumDevs = 1 Result = PASS root@libing-GPU:~/NVIDIA_CUDA-9.0_Samples/bin/x86_64/linux/release# ./deviceQuery ./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 1 CUDA Capable device(s) Device 0: "Tesla P40" CUDA Driver Version / Runtime Version 9.2 / 9.0 CUDA Capability Major/Minor version number: 6.1 Total amount of global memory: 22919 MBytes (24032378880 bytes) (30) Multiprocessors, (128) CUDA Cores/MP: 3840 CUDA Cores GPU Max Clock rate: 1531 MHz (1.53 GHz) Memory Clock rate: 3615 Mhz Memory Bus Width: 384-bit L2 Cache Size: 3145728 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 0 / 7 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 9.2, CUDA Runtime Version = 9.0, NumDevs = 1 Result = PASS
运行正常。
cuDNN的全称为NVIDIA CUDA® Deep Neural Network library,是NVIDIA专门针对深度神经网络(Deep Neural Networks)中的基础操作而设计基于GPU的加速库。cuDNN为深度神经网络中的标准流程提供了高度优化的实现方式。
官网下载:https://developer.nvidia.com/...
注:下载需先注册 NVIDIA Developer Program
下载的deb package共三个:libcudnn7、libcudnn7-dev、libcudnn7-doc:
# ls libcudnn* libcudnn7_7.3.1.20-1+cuda9.0_amd64.deb libcudnn7-doc_7.3.1.20-1+cuda9.0_amd64.deb libcudnn7-dev_7.3.1.20-1+cuda9.0_amd64.deb
安装:
# sudo dpkg -i libcudnn7_7.3.1.20-1+cuda9.0_amd64.deb Selecting previously unselected package libcudnn7. (Reading database ... 168316 files and directories currently installed.) Preparing to unpack libcudnn7_7.3.1.20-1+cuda9.0_amd64.deb ... Unpacking libcudnn7 (7.3.1.20-1+cuda9.0) ... Setting up libcudnn7 (7.3.1.20-1+cuda9.0) ... Processing triggers for libc-bin (2.23-0ubuntu10) ... # sudo dpkg -i libcudnn7-dev_7.3.1.20-1+cuda9.0_amd64.deb Selecting previously unselected package libcudnn7-dev. (Reading database ... 168322 files and directories currently installed.) Preparing to unpack libcudnn7-dev_7.3.1.20-1+cuda9.0_amd64.deb ... Unpacking libcudnn7-dev (7.3.1.20-1+cuda9.0) ... Setting up libcudnn7-dev (7.3.1.20-1+cuda9.0) ... update-alternatives: using /usr/include/x86_64-linux-gnu/cudnn_v7.h to provide /usr/include/cudnn.h (libcudnn) in auto mode # sudo dpkg -i libcudnn7-doc_7.3.1.20-1+cuda9.0_amd64.deb Selecting previously unselected package libcudnn7-doc. (Reading database ... 168328 files and directories currently installed.) Preparing to unpack libcudnn7-doc_7.3.1.20-1+cuda9.0_amd64.deb ... Unpacking libcudnn7-doc (7.3.1.20-1+cuda9.0) ... Setting up libcudnn7-doc (7.3.1.20-1+cuda9.0) ...
验证cuDNN:
# cp -r /usr/src/cudnn_samples_v7/ $HOME # cd $HOME/cudnn_samples_v7/mnistCUDNN # make clean && make rm -rf *o rm -rf mnistCUDNN /usr/local/cuda/bin/nvcc -ccbin g++ -I/usr/local/cuda/include -IFreeImage/include -m64 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_53,code=sm_53 -gencode arch=compute_53,code=compute_53 -o fp16_dev.o -c fp16_dev.cu g++ -I/usr/local/cuda/include -IFreeImage/include -o fp16_emu.o -c fp16_emu.cpp g++ -I/usr/local/cuda/include -IFreeImage/include -o mnistCUDNN.o -c mnistCUDNN.cpp /usr/local/cuda/bin/nvcc -ccbin g++ -m64 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_53,code=sm_53 -gencode arch=compute_53,code=compute_53 -o mnistCUDNN fp16_dev.o fp16_emu.o mnistCUDNN.o -I/usr/local/cuda/include -IFreeImage/include -LFreeImage/lib/linux/x86_64 -LFreeImage/lib/linux -lcudart -lcublas -lcudnn -lfreeimage -lstdc++ -lm # ./mnistCUDNN cudnnGetVersion() : 7301 , CUDNN_VERSION from cudnn.h : 7301 (7.3.1) Host compiler version : GCC 5.4.0 There are 1 CUDA capable devices on your machine : device 0 : sms 30 Capabilities 6.1, SmClock 1531.0 Mhz, MemSize (Mb) 22919, MemClock 3615.0 Mhz, Ecc=1, boardGroupID=0 Using device 0 Testing single precision Loading image data/one_28x28.pgm Performing forward propagation ... Testing cudnnGetConvolutionForwardAlgorithm ... Fastest algorithm is Algo 1 Testing cudnnFindConvolutionForwardAlgorithm ... ^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.076544 time requiring 57600 memory ^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.076800 time requiring 3464 memory ^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.077824 time requiring 0 memory ^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.108544 time requiring 2057744 memory ^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.132064 time requiring 203008 memory Resulting weights from Softmax: 0.0000000 0.9999399 0.0000000 0.0000000 0.0000561 0.0000000 0.0000012 0.0000017 0.0000010 0.0000000 Loading image data/three_28x28.pgm Performing forward propagation ... Resulting weights from Softmax: 0.0000000 0.0000000 0.0000000 0.9999288 0.0000000 0.0000711 0.0000000 0.0000000 0.0000000 0.0000000 Loading image data/five_28x28.pgm Performing forward propagation ... Resulting weights from Softmax: 0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 0.9999820 0.0000154 0.0000000 0.0000012 0.0000006 Result of classification: 1 3 5 Test passed! Testing half precision (math in single precision) Loading image data/one_28x28.pgm Performing forward propagation ... Testing cudnnGetConvolutionForwardAlgorithm ... Fastest algorithm is Algo 1 Testing cudnnFindConvolutionForwardAlgorithm ... ^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.048128 time requiring 0 memory ^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.066560 time requiring 28800 memory ^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.068608 time requiring 3464 memory ^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.106496 time requiring 207360 memory ^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.122880 time requiring 2057744 memory Resulting weights from Softmax: 0.0000001 1.0000000 0.0000001 0.0000000 0.0000563 0.0000001 0.0000012 0.0000017 0.0000010 0.0000001 Loading image data/three_28x28.pgm Performing forward propagation ... Resulting weights from Softmax: 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000714 0.0000000 0.0000000 0.0000000 0.0000000 Loading image data/five_28x28.pgm Performing forward propagation ... Resulting weights from Softmax: 0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 1.0000000 0.0000154 0.0000000 0.0000012 0.0000006 Result of classification: 1 3 5 Test passed!
测试通过!
pip方式安装tensorflow-gpu:
# sudo pip3 install --upgrade tensorflow-gpu
验证:
# python3 Python 3.5.2 (default, Nov 23 2017, 16:37:01) [GCC 5.4.0 20160609] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import tensorflow as tf >>> hello = tf.constant("hello, tensorflow!") >>> sess = tf.Session() 2018-10-30 18:20:35.827268: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA 2018-10-30 18:20:36.260805: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:964] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2018-10-30 18:20:36.261468: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1411] Found device 0 with properties: name: Tesla P40 major: 6 minor: 1 memoryClockRate(GHz): 1.531 pciBusID: 0000:00:07.0 totalMemory: 22.38GiB freeMemory: 22.22GiB 2018-10-30 18:20:36.261505: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1490] Adding visible gpu devices: 0 2018-10-30 18:20:36.580288: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] Device interconnect StreamExecutor with strength 1 edge matrix: 2018-10-30 18:20:36.580362: I tensorflow/core/common_runtime/gpu/gpu_device.cc:977] 0 2018-10-30 18:20:36.580371: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0: N 2018-10-30 18:20:36.580917: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1103] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 21549 MB memory) -> physical GPU (device: 0, name: Tesla P40, pci bus id: 0000:00:07.0, compute capability: 6.1) >>> print(sess.run(hello)) b'hello, tensorflow!'
运行正常!
此时打开另一个Terminal窗口,可以看到process信息:
# nvidia-smi Tue Oct 30 18:21:48 2018 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 396.44 Driver Version: 396.44 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla P40 Off | 00000000:00:07.0 Off | 0 | | N/A 31C P0 50W / 250W | 21785MiB / 22919MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 6800 C python3 21775MiB | +-----------------------------------------------------------------------------+
可以用 TensorBoard 来展现 TensorFlow 图,绘制图像生成的定量指标图以及显示附加数据(如其中传递的图像)。
通过 pip 安装 TensorFlow 时,也会自动安装 TensorBoard:
# pip3 show tensorboard Name: tensorboard Version: 1.11.0 Summary: TensorBoard lets you watch Tensors Flow Home-page: https://github.com/tensorflow/tensorboard Author: Google Inc. Author-email: [email protected] License: Apache 2.0 Location: /usr/local/lib/python3.5/dist-packages Requires: numpy, six, markdown, wheel, werkzeug, protobuf, grpcio Required-by: tensorflow-gpu
启动TensorBoard:
# nohup tensorboard --logdir /tmp/tensorflow &
查看启动日志,TensorBoard端口为6006:
TensorBoard 1.11.0 at http://libing-GPU:6006 (Press CTRL+C to quit)
TensorBoard登录地址为:<ip address>:6006
浏览器登录正常!
Jupyter是一个交互式的笔记本,可以很方便地创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。一般用与做数据清理和转换,数值模拟,统计建模,机器学习等等。
安装Jupyter:
# sudo pip3 install jupyter
生成配置文件:
# jupyter notebook --generate-config Writing default config to: /root/.jupyter/jupyter_notebook_config.py
生成Jupyter密码:
# python3 Python 3.5.2 (default, Nov 23 2017, 16:37:01) [GCC 5.4.0 20160609] on linux Type "help", "copyright", "credits" or "license" for more information. >>> from notebook.auth import passwd; >>> passwd() Enter password: Verify password: 'sha1:33acb81927e6:8db2c804e9015f47853ddc14f4fa92948d944b93'
将生成的hash串写入Jupyter配置文件:
## Hashed password to use for web authentication. # # To generate, type in a python/IPython shell: # # from notebook.auth import passwd; passwd() # # The string should be of the form type:salt:hashed-password. c.NotebookApp.password = 'sha1:33acb81927e6:8db2c804e9015f47853ddc14f4fa92948d944b93'
保存后,启动Jupyter(启动用户为root,10.0.0.10为本机地址):
# nohup jupyter notebook --allow-root --ip='10.0.0.10' &
查看日志,Jupyter已正常启动:
[I 10:02:02.468 NotebookApp] Serving notebooks from local directory: /root/jupyter [I 10:02:02.468 NotebookApp] The Jupyter Notebook is running at: [I 10:02:02.468 NotebookApp] http://10.0.0.10:8888/ [I 10:02:02.468 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [W 10:02:02.468 NotebookApp] No web browser found: could not locate runnable browser.
浏览器访问Jupyter,地址为:<ip address>:8888
(本例中116.196.118.38为云主机的公网IP):
输入密码后登陆:访问正常!
Jupyter中新建 HelloWorld 示例,代码如下:
import tensorflow as tf # Simple hello world using TensorFlow # Create a Constant op # The op is added as a node to the default graph. # # The value returned by the constructor represents the output # of the Constant op. hello = tf.constant('Hello, TensorFlow!') # Start tf session sess = tf.Session() # Run the op print(sess.run(hello))
运行示例:
运行正常!