dxbjfu0 2019-06-21
对于“group by”操作,我们通常是指以下一个或多个操作步骤:
(Splitting)按照一些规则将数据分为不同的组
(Applying)对于每组数据分别执行一个函数
(Combining)将结果组合刀一个数据结构中
将要处理的数组是:
df = pd.DataFrame({ 'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.random.randn(8) }) df A B C D 0 foo one 0.961295 -0.281012 1 bar one 0.901454 0.621284 2 foo two -0.584834 0.919414 3 bar three 1.259104 -1.012103 4 foo two 0.153107 1.108028 5 bar two 0.115963 1.333981 6 foo one 1.421895 -1.456916 7 foo three -2.103125 -1.757291
1、分组并对每个分组执行sum函数:
df.groupby('A').sum() C D A bar 2.276522 0.943161 foo -0.151661 -1.467777
2、通过多个列进行分组形成一个层次索引,然后执行函数:
df.groupby(['A', 'B']).sum() C D A B bar one 0.901454 0.621284 three 1.259104 -1.012103 two 0.115963 1.333981 foo one 2.383191 -1.737928 three -2.103125 -1.757291 two -0.431727 2.027441
Stack
tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']])) tuples [('bar', 'one'), ('bar', 'two'), ('baz', 'one'), ('baz', 'two'), ('foo', 'one'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')]
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B']) df2 = df[:4] df2 A B first second bar one -0.907306 -0.009961 two 0.905177 -2.877961 baz one -0.356070 -0.373447 two -1.496644 -1.958782
stacked = df2.stack() stacked first second bar one A -0.907306 B -0.009961 two A 0.905177 B -2.877961 baz one A -0.356070 B -0.373447 two A -1.496644 B -1.958782 dtype: float64
stacked.unstack() A B first second bar one -0.907306 -0.009961 two 0.905177 -2.877961 baz one -0.356070 -0.373447 two -1.496644 -1.958782
stacked.unstack(1) second one two first bar A -0.907306 0.905177 B -0.009961 -2.877961 baz A -0.356070 -1.496644 B -0.373447 -1.958782
要处理的数组为:
df A B C D F 2013-01-01 0.000000 0.000000 0.135704 5 NaN 2013-01-02 0.139027 1.683491 -1.031190 5 1 2013-01-03 -0.596279 -1.211098 1.169525 5 2 2013-01-04 0.367213 -0.020313 2.169802 5 3 2013-01-05 0.224122 1.003625 -0.488250 5 4 2013-01-06 0.186073 -0.537019 -0.252442 5 5
(一)、统计
1、执行描述性统计:
df.mean() A 0.053359 B 0.153115 C 0.283858 D 5.000000 F 3.000000 dtype: float64
2、在其他轴上进行相同的操作:
df.mean(1) 2013-01-01 1.283926 2013-01-02 1.358266 2013-01-03 1.272430 2013-01-04 2.103341 2013-01-05 1.947899 2013-01-06 1.879322 Freq: D, dtype: float64
3、对于拥有不同维度,需要对齐的对象进行操作,pandas会自动的沿着指定的维度进行广播
dates s = pd.Series([1,3,4,np.nan,6,8], index=dates).shift(2) s DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D') 2013-01-01 NaN 2013-01-02 NaN 2013-01-03 1 2013-01-04 3 2013-01-05 4 2013-01-06 NaN Freq: D, dtype: float64
(二)、Apply
对数据应用函数:
df.apply(np.cumsum) A B C D F 2013-01-01 0.000000 0.000000 0.135704 5 NaN 2013-01-02 0.139027 1.683491 -0.895486 10 1 2013-01-03 -0.457252 0.472393 0.274039 15 3 2013-01-04 -0.090039 0.452081 2.443841 20 6 2013-01-05 0.134084 1.455706 1.955591 25 10 2013-01-06 0.320156 0.918687 1.703149 30 15
df.apply(lambda x: x.max() - x.min()) A 0.963492 B 2.894589 C 3.200992 D 0.000000 F 4.000000 dtype: float64
(三)、字符串方法
Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素。
s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) s.str.lower() 0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object
1、时区表示:
rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D') ts = pd.Series(np.random.randn(len(rng)), rng) ts 2012-03-06 -0.932261 2012-03-07 -1.405305 2012-03-08 0.809844 2012-03-09 -0.481539 2012-03-10 -0.489847 Freq: D, dtype: float64
ts_utc = ts.tz_localize('UTC') ts_utc 2012-03-06 00:00:00+00:00 -0.932261 2012-03-07 00:00:00+00:00 -1.405305 2012-03-08 00:00:00+00:00 0.809844 2012-03-09 00:00:00+00:00 -0.481539 2012-03-10 00:00:00+00:00 -0.489847 Freq: D, dtype: float64
2、时区转换
ts_utc.tz_convert('US/Eastern') 2012-03-05 19:00:00-05:00 -0.932261 2012-03-06 19:00:00-05:00 -1.405305 2012-03-07 19:00:00-05:00 0.809844 2012-03-08 19:00:00-05:00 -0.481539 2012-03-09 19:00:00-05:00 -0.489847 Freq: D, dtype: float64
3、时区跨度转换
rng = pd.date_range('1/1/2012', periods=5, freq='M') ts = pd.Series(np.random.randn(len(rng)), index=rng) ps = ts.to_period() ts ps ps.to_timestamp() 2012-01-31 0.932519 2012-02-29 0.247016 2012-03-31 -0.946069 2012-04-30 0.267513 2012-05-31 -0.554343 Freq: M, dtype: float64 2012-01 0.932519 2012-02 0.247016 2012-03 -0.946069 2012-04 0.267513 2012-05 -0.554343 Freq: M, dtype: float64 2012-01-01 0.932519 2012-02-01 0.247016 2012-03-01 -0.946069 2012-04-01 0.267513 2012-05-01 -0.554343 Freq: MS, dtype: float64
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000)) ts = ts.cumsum() ts
图片描述
从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据。
df = pd.DataFrame({ 'id':[1,2,3,4,5,6], 'raw_grade':['a','b','b','a','a','e'] }) df id raw_grade 0 1 a 1 2 b 2 3 b 3 4 a 4 5 a 5 6 e
1、将原始的grade转换为Categorical数据类型:
df['grade'] = df['raw_grade'].astype('category', ordered=True) df['grade'] 0 a 1 b 2 b 3 a 4 a 5 e Name: grade, dtype: category Categories (3, object): [a < b < e]
2、将Categorical类型数据重命名为更有意义的名称:
df['grade'].cat.categories = ['very good', 'good', 'very bad']
3、对类别进行重新排序,增加缺失的类别:
df['grade'] = df['grade'].cat.set_categories(['very bad', 'bad', 'medium', 'good', 'very good']) df['grade'] 0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (5, object): [very bad < bad < medium < good < very good]
4、排序是按照Categorical的顺序进行的而不是按照字典顺序进行:
df.sort('grade') id raw_grade grade 5 6 e very bad 1 2 b good 2 3 b good 0 1 a very good 3 4 a very good 4 5 a very good
5、对Categorical列进行排序时存在空的类别:
df.groupby("grade").size() grade very bad 1 bad 0 medium 0 good 2 very good 3 dtype: int64
以上代码不想自己试一试吗?
镭矿 raquant提供 jupyter(研究) 在线练习学习 python 的机会,无需安装 python 即可运行 python 程序。