lickylin 2020-05-07
赫夫曼树
最优二叉树,WPL值最小(效率最高);
利用结点的权重规划二叉树(权重大表示访问频繁),遍历二叉树的时让这些权重大的尽量早的被遍历到;有效的提高了遍历二叉树访问结点的效率
例如:判断成绩优,良,差;根据成绩分布情况规划最优判断结构树
根据赫夫曼树的定义,可以计算出未规划的二叉树:WPL=5+15*2+70*3+10*3=275
规划后WPL=10+70*2+15*3+5*3=210
构造赫夫曼树的过程:
赫夫曼编码
可以有效的压缩数据,节省20%到90%的空间;
过程
#include<iostream> #include<string> using namespace std; struct Node { double weight; string ch; string code; int lchild, rchild, parent; }; void Select(Node huffTree[], int *a, int *b, int n)//找权值最小的两个a和b { int i; double weight = 0; //找最小的数 for (i = 0; i <n; i++) { if (huffTree[i].parent != -1) //判断节点是否已经选过 continue; else { if (weight == 0) { weight = huffTree[i].weight; *a = i; } else { if (huffTree[i].weight < weight) { weight = huffTree[i].weight; *a = i; } } } } weight = 0; //找第二小的数 for (i = 0; i < n; i++) { if (huffTree[i].parent != -1 || (i == *a))//排除已选过的数 continue; else { if (weight == 0) { weight = huffTree[i].weight; *b = i; } else { if (huffTree[i].weight < weight) { weight = huffTree[i].weight; *b = i; } } } } int temp; if (huffTree[*a].lchild < huffTree[*b].lchild) //小的数放左边 { temp = *a; *a = *b; *b = temp; } } void Huff_Tree(Node huffTree[], int w[], string ch[], int n) { for (int i = 0; i < 2 * n - 1; i++) //初始过程 { huffTree[i].parent = -1; huffTree[i].lchild = -1; huffTree[i].rchild = -1; huffTree[i].code = ""; } for (int i = 0; i < n; i++) { huffTree[i].weight = w[i]; huffTree[i].ch = ch[i]; } for (int k = n; k < 2 * n - 1; k++) { int i1 = 0; int i2 = 0; Select(huffTree, &i1, &i2, k); //将i1,i2节点合成节点k huffTree[i1].parent = k; huffTree[i2].parent = k; huffTree[k].weight = huffTree[i1].weight + huffTree[i2].weight; huffTree[k].lchild = i1; huffTree[k].rchild = i2; } } void Huff_Code(Node huffTree[], int n) { int i, j, k; string s = ""; for (i = 0; i < n; i++) { s = ""; j = i; while (huffTree[j].parent != -1) //从叶子往上找到根节点 { k = huffTree[j].parent; if (j == huffTree[k].lchild) //如果是根的左孩子,则记为0 { s = s + "0"; } else { s = s + "1"; } j = huffTree[j].parent; } cout << "字符 " << huffTree[i].ch << " 的编码:"; for (int l = s.size() - 1; l >= 0; l--) { cout << s[l]; huffTree[i].code += s[l]; //保存编码 } cout << endl; } } string Huff_Decode(Node huffTree[], int n,string s) { cout << "解码后为:"; string temp = "",str="";//保存解码后的字符串 for (int i = 0; i < s.size(); i++) { temp = temp + s[i]; for (int j = 0; j < n; j++) { if (temp == huffTree[j].code) { str=str+ huffTree[j].ch; temp = ""; break; } else if (i == s.size()-1&&j==n-1&&temp!="")//全部遍历后没有 { str= "解码错误!"; } } } return str; } int main() { //编码过程 const int n=5; Node huffTree[2 * n]; string str[] = { "A", "B", "C", "D", "E"}; int w[] = { 30, 30, 5, 20, 15 }; Huff_Tree(huffTree, w, str, n); Huff_Code(huffTree, n); //解码过程 string s; cout << "输入编码:"; cin >> s; cout << Huff_Decode(huffTree, n, s)<< endl;; system("pause"); return 0; }