在C++98基础上学习C++11新特性

fatansitic 2018-05-15

自己一直用的是C++98规范来编程,对于C++11只闻其名却没用过其特性。近期因为工作的需要,需要掌握C++11的一些特性,所以查阅了一些C++11资料。因为自己有C++98的基础,所以从C++98过渡到C++11并不算特别吃力,读了一些书籍后,算是对C++11有了个比较基础的理解,感觉程序员还是要经常保持新语言新特性的更新,现在 C++ 标准都出到C++17了!这篇文章就是对C++11一些常用新特性的一些总结,以C++98和 C++11在语法上的差异来突出C++11新特性的非凡优势。

一、新语法

1.自动类型推导auto

auto的自动推导,用于从初始化表达式中推断出变量的数据类型。

//C++98
int a = 10;
string s = "abc";
float b = 10.0;
vector<int> c;
vector<vector<int> > d;
map<int, string> m;
m[1] = "aaa";
map<int, string>::iterator it = m.begin();


//C++11
auto a1 = 10;  //a1为int
auto s1 = "abc";  //s1为string
auto b1 = b; 
auto c1 = c;
auto d1 = d;
auto e1 = 'a';
int* x = &a1;
auto d1 = x;
auto m1 = m.begin();
auto x=1,y=2; //ok
auto i=1.j=3.14; //compile error

double a2 = 3.144;
const auto a3 = a2;  //const double
auto a4 = a2;  //double
volatile int c2 = 3;
auto c3 = c2; //int

2.萃取类型decltype

decltype可以通过一个变量或表达式得到类型。
#include <iostream>
#include <vector>

using namespace std;

int add(int a)
{
    return ++a;
}

void fun(int a)
{
    cout << "call function: [int]\n" << endl;
}

void fun(int *a)
{
    cout << "call function: [int*]\n" << endl;
}

int main()
{
    //C++11
    int aa = 10;
    decltype(aa) bb = 11;
    string ss = "hello intel";
    decltype(ss) ss1 = "hello";
    const vector<int> vec(1);
    decltype(vec[0]) cc = 1;
    decltype(0) dd = vec[0];  //dd是int类型
    decltype(add(1)) ee;  //int
    int a[5];
    decltype(a) ff; //int[5]
    //decltype(fun) gg;  无法通过编译,是个重载函数
   
    return 0;
}

3.nullptr

空指针标识符nullptr是一个表示空指针的标识,他不是一个整数,这是与我们常用的NULL宏的区别。NULL只是一个定义为常整数0的宏,而nullptr是C++11的一个关键字,一个內建的标识符。
#include <iostream>
#include <vector>

using namespace std;

void fun(int a)
{
    cout << "call function: [int]\n" << endl;
}

void fun(int *a)
{
    cout << "call function: [int*]\n" << endl;
}

int main()
{
    //C++11
    fun(NULL);  //call function: [int]
    fun(nullptr);  //call function: [int*]

    int* p = NULL;
    fun(p);  //call function: [int*]

    return 0;
}

4.区间迭代range for

C++98和C++11在使用语法上的差异如下:
#include <iostream>
#include <vector>

using namespace std;


int main()
{
    //C++98
    vector<int> vec(8, 1);
    cout << "C++98 range for:" << endl;
    for (vector<int>::iterator it = vec.begin(); it != vec.end(); it++)
    {
        cout << *it << endl;
    }

    //C++11
    cout << "C++11 range for:" << endl;
    for (auto d : vec)
    {
        cout << d << endl;
    }

    return 0;
}

值得指出的是,是否能够使用基于范围的for循环,必须依赖一些条件。首先,就是for循环迭代的范围是可确定的。对于类来说,如果该类有begin和end函数,那么for_each之间就是for循环迭代的范围。对于数组而言,就是数组的第一个和最后一个元素间的范围。其次,基于范围的for循环还要求迭代的对象实现+ + 和==等操作符。对于STL中的容器,如string、array、map等使用起来是不会有问题的。下面是C++11操作vector和数组的实践:
#include <iostream>
#include <vector>

using namespace std;

int main()
{
    vector<int> vec(8, 1);

    //C++11
    cout << "C++11 value range for:" << endl;
    /*d非引用,修改d不会影响vector里的值*/
    for (auto d : vec)  //d中存储的是vec中的值
    {
        d = 2;
    }

    for (auto d : vec) 
    {
        cout << d << endl;
    }

    cout << "C++11 reference range for:" << endl;
    /*当迭代变量d为引用时,vector里的值可以被修改*/
    for (auto &d : vec) 
    {
        d = 2;
    }

    for (auto d : vec) 
    {
        cout << d << endl;
    }

    //数组for_each
    char arr[] = {'a','b','c','d'};
    for (auto &d : arr)
    {
        d -= 32;
    }
    for (auto d : arr)
    {
        cout << d << endl;
    }

    //遍历二维数组,注意迭代变量row必须为引用。如果你想用 range for 的方法,来遍历更高维的数组 (dim > 2),那么你只需要:除了最内层循环之外,其他所有外层循环都加入 '&' 即可。
    int array2[5][5] = {0};
    for (auto &row : array2)
        for (auto col : row)
            cout << col << endl;

    return 0;
}

5.返回类型后置语法

先看下面这个例子,编译器在推导decltype(t1+t2)时表达式中t1和t2都未声明,所以编译失败。

#include <iostream>
#include <vector>

using namespace std;

template<class T1, class T2>
decltype(t1 + t2) sum(T1 t1, T2 t2)
{
    return t1 + t2;
}

int main()
{
    auto total = sum(1, 2);
    cout << total << endl;
    return 0;
}

所以C++11引入新语法,即把函数的返回值移至参数声明之后,复合符号->decltype(t1+t2)被称为追踪返回类型。而原本的函数返回值由auto占据。
#include <iostream>
#include <vector>

using namespace std;

template<class T1, class T2>
auto sum(T1 t1, T2 t2) ->decltype(t1+t2)
{
    return t1 + t2;
}

int main()
{
    auto total = sum(1, 2);
    cout << total << endl;
    return 0;
}


6.final和override
struct B
{
    virtual void f1(int) const;
    virtual void f2();
    void f3();
};

struct D1 : public B
{
    void f1(int) const override;  //ok
    void f2(int) override;  //error,B中没有形如f2(int)的函数
    void f3() override;  //error,f3不是虚函数
    void f4() override;  //error,B中无f4函数
};

struct D2 : public B
{
    void f1(int) const final;  //不许后续的其他类覆盖
};

struct D3 :public D2
{
    void f2();
    void f1(int) const; //error,final函数不可覆盖
};

final还可以用于防止继承的发生
class NoDerived final
{

};

class Bad :NoDerived  //NoDerived不可做基类
{

};

class Base
{

};

class Last final :Base
{

};

class Bad2 :Last  //Last不可做基类
{

};


7.=default和=delete

对于 C++ 的类,如果程序员没有为其定义特殊成员函数,那么在需要用到某个特殊成员函数的时候,编译器会隐式的自动生成一个默认的特殊成员函数,比如拷贝构造函数,或者拷贝赋值操作符。

C++11允许我们使用=default来要求编译器生成一个默认构造函数,也允许我们使用=delete来告诉编译器不要为我们生成某个默认函数
class B
{
    B() = default; //显示声明使用默认构造函数
    B(const B&) = delete; //禁止使用类对象之间的拷贝
    ~B() = default;  //显示声明使用默认析构函数
    B& operator=(const B&) = delete;  //禁止使用类对象之间的赋值
    B(int a); 
};

8.lambda表达式

简单来说,Lambda函数也就是一个函数(匿名函数),它的语法定义如下:
[capture](parameters) mutable ->return-type{statement}
1.[=,&a,&b]表示以引用传递的方式捕捉变量a和b,以值传递方式捕捉其它所有变量;
2.[&,a,this]表示以值传递的方式捕捉变量a和类的this指针,引用传递方式捕捉其它所有变量。
#include <iostream>

using namespace std;

int main()
{
    auto f = []() {cout << "hello world!" << endl; };
    f();  //hello world!

    int a = 123;
    auto f1 = [a] { cout << a << endl; };
    f1();  //123

    auto f2 = [&a] {cout << a << endl; };
    a = 789;
    f2();  //789

    //隐式捕获:让编译器根据函数体中的代码来推断需要捕获哪些变量
    auto f3 = [=] {cout << a << endl; };
    f3();  //789

    auto f4 = [&] {cout << a << endl; };
    a = 990;
    f4();  //990

    auto f5 = [](int a, int b)->int {return a + b; };
    printf("%d\n", f5(1, 2));  //3

    return 0;
}

lambda表达式在C++下的应用,排序
#include <stdio.h>
#include <algorithm>
#include <vector>

using namespace std;

void print(char arr[], int len)
{
    for (int i = 0; i < len; i++)
    {
        printf("%d ", arr[i]);
    }
    printf("\n");
}

bool cmp(char a, char b)
{
    if (a > b)
        return true;
    else
        return false;
}

int main()
{
    //c++98
    char arr1[] = { 2,5,2,1,5,89,36,22,89 };
    int len = sizeof(arr1) / sizeof(char);
    sort(arr1, arr1 + len, cmp);
    print(arr1, len);

    //c++11
    char arr2[] = { 2,5,2,1,5,89,36,22,89 };
    int len2 = sizeof(arr2) / sizeof(char);
    sort(arr2, arr2 + len2, [](char a, char b)->bool {return a > b; });
    print(arr2, len2);
    return 0;
}

9.std::move

std::move是为性能而生,通过std::move,可以避免不必要的拷贝操作。std::move是将对象的状态或者所有权从一个对象转移到另一个对象,只是转移,没有内存的搬迁或者内存拷贝。
#include <iostream>
#include <utility>
#include <vector>
#include <string>
int main()
{
    std::string str = "Hello";
    std::vector<std::string> v;
    //调用常规的拷贝构造函数,新建字符数组,拷贝数据
    v.push_back(str);
    std::cout << "After copy, str is \"" << str << "\"\n"; //After move, str is "Hello"
    //调用移动构造函数,掏空str,掏空后,最好不要使用str
    v.push_back(std::move(str));
    std::cout << "After move, str is \"" << str << "\"\n";  //After move, str is ""
    std::cout << "The contents of the vector are \"" << v[0]
        << "\", \"" << v[1] << "\"\n";  //The contents of the vector are "Hello", "Hello"
}

二、STL新内容

1.std::array

1.使用 std::array保存在栈内存中,相比堆内存中的 std::vector,我们就能够灵活的访问这里面的元素,从而获得更高的性能;同时正式由于其堆内存存储的特性,有些时候我们还需要自己负责释放这些资源。


2.使用std::array能够让代码变得更加现代,且封装了一些操作函数,同时还能够友好的使用标准库中的容器算法等等,比如 std::sort。


std::array 会在编译时创建一个固定大小的数组,std::array 不能够被隐式的转换成指针,使用 std::array 很简单,只需指定其类型和大小即可:
#include <stdio.h>
#include <algorithm>
#include <array>

void foo(int* p)
{

}

int main()
{
    std::array<int, 4> arr = {4,3,1,2};

    foo(&arr[0]);  //OK
    foo(arr.data());  //OK
    //foo(arr);  //wrong
    std::sort(arr.begin(), arr.end());  //排序

    return 0;
}

 

2.std::forward_list

std::forward_list 使用单向链表进行实现,提供了 O(1) 复杂度的元素插入,不支持快速随机访问(这也是链表的特点),也是标准库容器中唯一一个不提供 size() 方法的容器。当不需要双向迭代时,具有比 std::list 更高的空间利用率。
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string>
#include <forward_list>

int main()
{
    std::forward_list<int> list1 = { 1, 2, 3, 4 };

    //从前面向foo1容器中添加数据,注意不支持push_back
    list1.pop_front();  //删除链表第一个元素
    list1.remove(3);  //删除链表值为3的节点
    list1.push_front(2);
    list1.push_front(1);
    list1.push_front(14);
    list1.push_front(17);

    list1.sort();

    for (auto &n : list1)
    {
        if (n == 17)
            n = 19;
    }

    for (const auto &n : list1)
    {
        std::cout << n << std::endl;  //1 2 2 4 14 19
    }

    return 0;
}

3.std::unordered_map和std::unordered_set

无序容器中的元素是不进行排序的,内部通过 Hash 表实现,插入和搜索元素的平均复杂度为 O(constant),在不关心容器内部元素顺序时,能够获得显著的性能提升。

C++11 引入了两组无序容器:std::unordered_map/std::unordered_multimap 和 std::unordered_set/std::unordered_multiset。

下面给出unordered_map和unordered_set的使用方法。
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string>
#include <unordered_map>
#include <unordered_set>

void foo(int* p)
{

}

int main()
{
    //unordered_map usage
    std::unordered_map<std::string, int> um = { {"2",2},{"1",1},{"3",3} };

    //遍历
    for (const auto &n : um)
    {
        std::cout << "key:" << n.first << "  value:" << n.second << std::endl;
    }

    std::cout << "value:" << um["1"] << std::endl;


    //unordered_set usage
    std::unordered_set<int> us = { 2,3,4,1};

    //遍历
    for (const auto &n : us)
    {
        std::cout << "value:" << n << std::endl;
    }

    std::cout << "value:" << us.count(9) << std::endl; //判断一个数是否在集合内,1存在0不存在
    std::cout << "value:" << *us.find(1) << std::endl;  //查找一个特定的数是否在集合内,找到就返回该数的迭代器位置

    return 0;
}

三、智能指针

1. std::shared_ptr

shared_ptr使用引用计数,每一个shared_ptr的拷贝都指向相同的内存。每使用他一次,内部的引用计数加1,每析构一次,内部的引用计数减1,减为0时,删除所指向的堆内存。shared_ptr内部的引用计数是安全的,但是对象的读取需要加锁。
#include <stdio.h>
#include <memory>
#include <iostream>

int main()
{
    //auto ptr = std::make_shared<int>(10);
    std::shared_ptr<int> ptr(new int(10));
    std::shared_ptr<int> ptrC(ptr);

    auto ptr2 = ptr;

    {
        auto ptr3 = ptr2;
        std::cout << "pointer1.use_count() = " << ptr.use_count() << std::endl;  //4
        std::cout << "pointer2.use_count() = " << ptr2.use_count() << std::endl;  //4
    }

    std::cout << "pointer1.use_count() = " << ptr.use_count() << std::endl;  //3
    std::cout << "pointer2.use_count() = " << ptr2.use_count() << std::endl;  //3

    int *p = ptr.get(); //获取原始指针

    std::cout << "pointer1.use_count() = " << ptr.use_count() << std::endl;  //3
    std::cout << "pointer2.use_count() = " << ptr2.use_count() << std::endl;  //3

    return 0;
}

3 2. std::unique_ptr

std::unique_ptr 是一种独占的智能指针,它禁止其他智能指针与其共享同一个对象,从而保证代码的安全:
#include <stdio.h>
#include <memory>
#include <iostream>

int main()
{
    std::unique_ptr<int> ptr(new int(10));
    //auto ptr2 = ptr; //非法

    //虽说unique_ptr是不可复制的,但我们可以使用std::move将其独占权转移到其他的unique_ptr
    auto ptr2(std::move(ptr));
    std::cout << *ptr2 << std::endl;

    return 0;
}

3. std::weak_ptr

先观察下面的代码,如果我们在类father中使用的是shared_ptr
father !
son !

以上问题就是shared_ptr的环形引用问题。为了避免shared_ptr的环形引用问题,需要引入一个弱引用weak_ptr, weak_ptr是为了配合shared_ptr而引入的一种智能指针,弱引用不会引起引用计数增加,它更像是shared_ptr的一个助手而不是智能指针,因为它不具有普通指针的行为,没有重载operator*和->,它的最大作用在于协助shared_ptr工作,像旁观者那样观测资源的使用情况.
#include <iostream>
#include <memory>
using namespace std;

class father;
class son;

class father {
public:
    father() {
        cout << "father !" << endl;
    }
    ~father() {
        cout << "~~~~~father !" << endl;
    }
    void setSon(shared_ptr<son> s) {
        son = s;
    }
private:
    //shared_ptr<son> son;
    weak_ptr<son> son; // 用weak_ptr来替换
};


class son {
public:
    son() {
        cout << "son !" << endl;
    }
    ~son() {
        cout << "~~~~~~son !" << endl;
    }
    void setFather(shared_ptr<father> f) {
        father = f;
    }
private:
    shared_ptr<father> father;
};

void test() {
    shared_ptr<father> f(new father());
    shared_ptr<son> s(new son());
    f->setSon(s);
    s->setFather(f);
}

int main()
{
    test();
    return 0;
}

输出:
father !
son !
~~~~~~son !
~~~~~father !

相关推荐