isHooky 2010-04-02
五、文件系统元数据的持久化
Namenode存储HDFS的元数据。对于任何对文件元数据产生修改的操作,Namenode都使用一个称为Editlog的事务日志记录下来。例如,在HDFS中创建一个文件,Namenode就会在Editlog中插入一条记录来表示;同样,修改文件的replication因子也将往Editlog插入一条记录。Namenode在本地OS的文件系统中存储这个Editlog。整个文件系统的namespace,包括block到文件的映射、文件的属性,都存储在称为FsImage的文件中,这个文件也是放在Namenode所在系统的文件系统上。
Namenode在内存中保存着整个文件系统namespace和文件Blockmap的映像。这个关键的元数据设计得很紧凑,因而一个带有4G内存的Namenode足够支撑海量的文件和目录。当Namenode启动时,它从硬盘中读取Editlog和FsImage,将所有Editlog中的事务作用(apply)在内存中的FsImage,并将这个新版本的FsImage从内存中flush到硬盘上,然后再truncate这个旧的Editlog,因为这个旧的Editlog的事务都已经作用在FsImage上了。这个过程称为checkpoint。在当前实现中,checkpoint只发生在Namenode启动时,在不久的将来我们将实现支持周期性的checkpoint。
Datanode并不知道关于文件的任何东西,除了将文件中的数据保存在本地的文件系统上。它把每个HDFS数据块存储在本地文件系统上隔离的文件中。Datanode并不在同一个目录创建所有的文件,相反,它用启发式地方法来确定每个目录的最佳文件数目,并且在适当的时候创建子目录。在同一个目录创建所有的文件不是最优的选择,因为本地文件系统可能无法高效地在单一目录中支持大量的文件。当一个Datanode启动时,它扫描本地文件系统,对这些本地文件产生相应的一个所有HDFS数据块的列表,然后发送报告到Namenode,这个报告就是Blockreport。
六、通讯协议
所有的HDFS通讯协议都是构建在TCP/IP协议上。客户端通过一个可配置的端口连接到Namenode,通过ClientProtocol与Namenode交互。而Datanode是使用DatanodeProtocol与Namenode交互。从ClientProtocol和Datanodeprotocol抽象出一个远程调用(RPC),在设计上,Namenode不会主动发起RPC,而是是响应来自客户端和Datanode的RPC请求。
七、健壮性
HDFS的主要目标就是实现在失败情况下的数据存储可靠性。常见的三种失败:Namenodefailures,Datanodefailures和网络分割(networkpartitions)。
1、硬盘数据错误、心跳检测和重新复制
每个Datanode节点都向Namenode周期性地发送心跳包。网络切割可能导致一部分Datanode跟Namenode失去联系。Namenode通过心跳包的缺失检测到这一情况,并将这些Datanode标记为dead,不会将新的IO请求发给它们。寄存在deadDatanode上的任何数据将不再有效。Datanode的死亡可能引起一些block的副本数目低于指定值,Namenode不断地跟踪需要复制的block,在任何需要的情况下启动复制。在下列情况可能需要重新复制:某个Datanode节点失效,某个副本遭到损坏,Datanode上的硬盘错误,或者文件的replication因子增大。
2、集群均衡
HDFS支持数据的均衡计划,如果某个Datanode节点上的空闲空间低于特定的临界点,那么就会启动一个计划自动地将数据从一个Datanode搬移到空闲的Datanode。当对某个文件的请求突然增加,那么也可能启动一个计划创建该文件新的副本,并分布到集群中以满足应用的要求。这些均衡计划目前还没有实现。
3、数据完整性
从某个Datanode获取的数据块有可能是损坏的,这个损坏可能是由于Datanode的存储设备错误、网络错误或者软件bug造成的。HDFS客户端软件实现了HDFS文件内容的校验和。当某个客户端创建一个新的HDFS文件,会计算这个文件每个block的校验和,并作为一个单独的隐藏文件保存这些校验和在同一个HDFSnamespace下。当客户端检索文件内容,它会确认从Datanode获取的数据跟相应的校验和文件中的校验和是否匹配,如果不匹配,客户端可以选择从其他Datanode获取该block的副本。
4、元数据磁盘错误
FsImage和Editlog是HDFS的核心数据结构。这些文件如果损坏了,整个HDFS实例都将失效。因而,Namenode可以配置成支持维护多个FsImage和Editlog的拷贝。任何对FsImage或者Editlog的修改,都将同步到它们的副本上。这个同步操作可能会降低Namenode每秒能支持处理的namespace事务。这个代价是可以接受的,因为HDFS是数据密集的,而非元数据密集。当Namenode重启的时候,它总是选取最近的一致的FsImage和Editlog使用。
Namenode在HDFS是单点存在,如果Namenode所在的机器错误,手工的干预是必须的。目前,在另一台机器上重启因故障而停止服务的Namenode这个功能还没实现。
5、快照
快照支持某个时间的数据拷贝,当HDFS数据损坏的时候,可以恢复到过去一个已知正确的时间点。HDFS目前还不支持快照功能。
八、数据组织
1、数据块
兼容HDFS的应用都是处理大数据集合的。这些应用都是写数据一次,读却是一次到多次,并且读的速度要满足流式读。HDFS支持文件的write-once-read-many语义。一个典型的block大小是64MB,因而,文件总是按照64M切分成chunk,每个chunk存储于不同的Datanode
2、步骤
某个客户端创建文件的请求其实并没有立即发给Namenode,事实上,HDFS客户端会将文件数据缓存到本地的一个临时文件。应用的写被透明地重定向到这个临时文件。当这个临时文件累积的数据超过一个block的大小(默认64M),客户端才会联系Namenode。Namenode将文件名插入文件系统的层次结构中,并且分配一个数据块给它,然后返回Datanode的标识符和目标数据块给客户端。客户端将本地临时文件flush到指定的Datanode上。当文件关闭时,在临时文件中剩余的没有flush的数据也会传输到指定的Datanode,然后客户端告诉Namenode文件已经关闭。此时Namenode才将文件创建操作提交到持久存储。如果Namenode在文件关闭前挂了,该文件将丢失。
上述方法是对通过对HDFS上运行的目标应用认真考虑的结果。如果不采用客户端缓存,由于网络速度和网络堵塞会对吞估量造成比较大的影响。
3、流水线复制
当某个客户端向HDFS文件写数据的时候,一开始是写入本地临时文件,假设该文件的replication因子设置为3,那么客户端会从Namenode获取一张Datanode列表来存放副本。然后客户端开始向第一个Datanode传输数据,第一个Datanode一小部分一小部分(4kb)地接收数据,将每个部分写入本地仓库,并且同时传输该部分到第二个Datanode节点。第二个Datanode也是这样,边收边传,一小部分一小部分地收,存储在本地仓库,同时传给第三个Datanode,第三个Datanode就仅仅是接收并存储了。这就是流水线式的复制。
九、可访问性
HDFS给应用提供了多种访问方式,可以通过DFSShell通过命令行与HDFS数据进行交互,可以通过javaAPI调用,也可以通过C语言的封装API访问,并且提供了浏览器访问的方式。正在开发通过WebDav协议访问的方式。具体使用参考文档。
十、空间的回收
1、文件的删除和恢复
用户或者应用删除某个文件,这个文件并没有立刻从HDFS中删除。相反,HDFS将这个文件重命名,并转移到/trash目录。当文件还在/trash目录时,该文件可以被迅速地恢复。文件在/trash中保存的时间是可配置的,当超过这个时间,Namenode就会将该文件从namespace中删除。文件的删除,也将释放关联该文件的数据块。注意到,在文件被用户删除和HDFS空闲空间的增加之间会有一个等待时间延迟。
当被删除的文件还保留在/trash目录中的时候,如果用户想恢复这个文件,可以检索浏览/trash目录并检索该文件。/trash目录仅仅保存被删除文件的最近一次拷贝。/trash目录与其他文件目录没有什么不同,除了一点:HDFS在该目录上应用了一个特殊的策略来自动删除文件,目前的默认策略是删除保留超过6小时的文件,这个策略以后会定义成可配置的接口。
2、Replication因子的减小
当某个文件的replication因子减小,Namenode会选择要删除的过剩的副本。下次心跳检测就将该信息传递给Datanode,Datanode就会移除相应的block并释放空间,同样,在调用setReplication方法和集群中的空闲空间增加之间会有一个时间延迟。
参考资料:
HDFSJavaAPI:http://hadoop.apache.org/core/docs/current/api/
HDFSsourcecode:http://hadoop.apache.org/core/version_control.html