cangyue000 2015-04-23
最近项目略多,其中一个需要找出一些和脸比较像但是不是脸的负样本,想用OpenCV的人脸检测器检测到的错误脸作为这样的负样本。
但是国内(包括国外)居然几乎没有相关的资料如何输出detectMultiScale()的置信率或者说是人脸得分
所以写一篇小小的总结供有相关需求的人参考。
看了下人脸识别函数的OpenCV的源码
\sources\modules\objdetect\src\cascadedetect.cpp
中detectMultiScale有两个重载,第二个重载在opencv的开发文档里居然只字未提:
void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects,
vector<int>& rejectLevels,
vector<double>& levelWeights,
double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels )
发现他有个rejectLevels和levelWeight这两个引用参数,看名字感觉是一种得分输出。
google了一下发现国外问的人不少但是基本没啥解释(或者是我没认真找?)
然后看了下它调用的cvHaarDetectObjectsForROC()的源码实现,大概懂了这俩vectors是在干什么的。
先上结论:确实和人脸得分有关。
首先应该明白一点detectMultiScale()这个方法是一个级联分类器,使用了boosting的方法。所以输入图像要经过层层(级级)选拔,留到最后的才是真汉子(正样本)
rejectLevels就是代表在第几层被out的。如果是最后一层(在lbpcascade_frontalface.xml中是20,具体要看xml中的叙述)被out,则说明很可能是正样本。
为啥说很可能呢?
因为还有个参数:levelWeight。即使是在最后一层被out的,levelWeight很小甚至是负数,也可以看成是负样本。
实际上很多负样本正是在最后一层被out的。
见下图:
我这里只截取了level在20才out的框。输出了他们的levelWeight。是脸的地方最大是4.23多,其他的就很小。不用过多解释了吧~
所以这个函数的原理是这样的(个人理解,有错误请指教):
首先一个level一个level地测试样本,然后每一个level给一个对应的得分,也就是levelWeight,如果这个weight低于或者高于对应level的threshold,则被抛弃。
坚持到最后一个level并且在最后一个level仍然满足threshold的框就是正确的脸(正样本)。
所以,人脸的分应该是这样:level越大,分数越高,在相同的level,levelWeight越大分数越高。
但是实际上真正的人脸都是能坚持到level20(最后一个level)的,所以只比对最后一个level的所有大于1的框的levelWeight进行比对就可以知道脸的得分啦~
这里给出所有level被gg的框的图:
最后给出灰常短小精悍的demo的源代码:
#include <opencv2\opencv.hpp>
#include <iostream>
#include <vector>
#include <fstream>
#include <math.h>
using namespace std;
using namespace cv;
const string xmlpath = "lbpcascade_frontalface.xml";
CascadeClassifier face_cc;
int tic = 0;
void detect(Mat img){
vector<Rect> faces;
vector<int> rejLevel;
vector<double> levelW;
Mat grayimg;
cvtColor(img, grayimg, CV_RGB2GRAY);
equalizeHist(grayimg, grayimg);
int minl = min(img.rows, img.cols);
face_cc.detectMultiScale(grayimg, faces, rejLevel, levelW, 1.1, 3, 0, Size(), Size(), true);
//face_cc.detectMultiScale(grayimg, faces, 1.1);
for ( int i = 0; i < faces.size(); i++ )
{
if ( rejLevel[i] < 00 )
{
continue;
}
stringstream text1, text2;
text1 << "rejLevel:" << rejLevel[ i ];
text2 << "levelW:" << levelW[ i ];
string ttt = text1.str();
rectangle(img, faces[ i ], Scalar(255, 255, 0), 2, 8, 0);
putText(img, ttt, cvPoint(faces[ i ].x, faces[ i ].y - 3), 1, 1, Scalar(0,255,255));
ttt = text2.str();
putText(img, ttt, cvPoint(faces[ i ].x, faces[ i ].y + 12), 1, 1, Scalar(255, 0, 255));
}
imshow("IMG", img);
waitKey(0);
}
int main(){
if ( !face_cc.load(xmlpath) )
{
cout << "load error!\n";
return -1;
}
ifstream pathin;
pathin.open("imgpath.txt");
string t;
while ( pathin >> t && tic < 10000)
{
Mat img = imread(t);
detect(img);
}
pathin.close();
return 0;
}
--------------------------------------分割线 --------------------------------------
--------------------------------------分割线 --------------------------------------
OpenCV的详细介绍:请点这里
OpenCV的下载地址:请点这里