闫不由衷 2010-06-04
本节向大家介绍一下利用Cloudera 实现Hadoop 的方法,这里主要介绍一下Hadoop的概念和利用Cloudera 实现 Hadoop 的规划,希望通过本节的介绍大家对利用Cloudera 实现Hadoop 有一定的认识。
利用 Cloudera 实现Hadoop
前言
Hadoop 是一个实现了 MapReduce 计算模型的开源分布式并行编程框架。MapReduce的概念来源于Google实验室,它是一个简化并行计算的编程模型,适用于大规模集群上的海量数据处理,目前最成功的应用是分布式搜索引擎。随着2007年底该模式Java开源实现项目Apache Hadoop的出现,使得程序员可以轻松地编写分布式并行程序,并将其运行于计算机集群上,完成海量数据的计算。近两年尤其是今年国内外采用 MapReduce模型的应用也逐渐丰富起来,如像NTT KDDI和中国移动这类的电信公司采用该模型分析用户信息,优化网络配置;美国供电局采用该模型来分析电网现状;包括VISA和JP摩根在内的金融公司采用该模型来分析股票数据;包括Amazon和ebay在内的零售商和电子商务公司也开始采用该模型;甚至部分生物公司也采用该模型来进行DNA测序和分析。然而Hadoop安装、部署、管理的难度非常大,这使用很多用户对Hadoop望而却步,好在这种情况不久就得到了改善,Cloudera提供了非常简单的Hadoop的发布版本,能够十分方便地对Hadoop进行安装、部署和管理,这导致目前大约有75%的Hadoop新用户使用Cloudera。下面是利用Cloudera 实现Hadoop 的具体规划。
规划
运行模式
Hadoop有三种运行模式:单机(非分布)运行模式、伪分布运行模式和分布式运行模式。其中前两种运行模式体现不了 Hadoop 分布式计算的优势,并没有什么实际意义(当然它们对程序的测试及调试还是很有帮助的),因此在这里还是采用实际环境中使用的分布式运行模式来部署。
主机规划
在这里拟采用三台主机搭建Hadoop环境,由于后期还需要测试增删主机及跨网段主机对Hadoop环境的影响,特将Hadoop主机规划如下:Hadoop-01 10.137.253.201Hadoop-02 10.137.253.202Hadoop-03 10.137.253.203 准备后期加入的测试主机Hadoop-04 10.137.253.204Firehare-303 10.10.3.30 准备后期加入的跨网段测试主机