georgesale 2020-06-27
声明:本文章为阅读书籍《Python神经网络编程》而来,代码与书中略有差异,书籍封面:

若要本地运行,请更改源码中图片与数据集的位置,环境为 Python3.6x.
import numpy as np
import scipy.special as ss
import matplotlib.pyplot as plt
import imageio as im
import glob as gl
class NeuralNetwork:
# initialise the network
def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
# set number of each layer
self.inodes = inputnodes
self.hnodes = hiddennodes
self.onodes = outputnodes
self.wih = np.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))
self.who = np.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))
# learning rate
self.lr = learningrate
# activation function is sigmoid
self.activation_function = lambda x: ss.expit(x)
pass
# train the neural network
def train(self, inputs_list, targets_list):
inputs = np.array(inputs_list, ndmin=2).T
targets = np.array(targets_list, ndmin=2).T
hidden_inputs = np.dot(self.wih, inputs)
hidden_outputs = self.activation_function(hidden_inputs)
final_inputs = np.dot(self.who, hidden_outputs)
final_outputs = self.activation_function(final_inputs)
# errors
output_errors = targets - final_outputs
# b-p algorithm
hidden_errors = np.dot(self.who.T, output_errors)
# update weight
self.who += self.lr * np.dot((output_errors * final_outputs * (1.0 - final_outputs)),
np.transpose(hidden_outputs))
self.wih += self.lr * np.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), np.transpose(inputs))
pass
# query the neural network
def query(self, inputs_list):
inputs = np.array(inputs_list, ndmin=2).T
hidden_inputs = np.dot(self.wih, inputs)
hidden_outputs = self.activation_function(hidden_inputs)
final_inputs = np.dot(self.who, hidden_outputs)
final_outputs = self.activation_function(final_inputs)
return final_outputs
# numbers
input_nodes = 784
hidden_nodes = 100
output_nodes = 10
# learning rate
learning_rate = 0.2
# creat instance of neural network
global n
n = neuralNetwork(input_nodes, hidden_nodes, output_nodes, learning_rate)
# file read only ,root of the file
training_data_file = open(r"C:\Users\ELIO\Desktop\mnist_train.txt", ‘r‘)
training_data_list = training_data_file.readlines()
training_data_file.close()
# train the neural network
epochs = 5
for e in range(epochs):
for record in training_data_list:
all_values = record.split(‘,‘)
# scale and shift the inputs
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
targets = np.zeros(output_nodes) + 0.01
# all_values[0] is the target label for this record
targets[int(all_values[0])] = 0.99
n.train(inputs, targets)
pass
pass
# load the file into a list
test_data_file = open(r"C:\Users\ELIO\Desktop\mnist_train_100.csv.txt", ‘r‘)
test_data_list = test_data_file.readlines()
test_data_file.close()
# test the neural network
# score for how well the network performs
score = []
# go through all the records
for record in test_data_list:
all_values = record.split(‘,‘)
# correct answer is the first value
correct_label = int(all_values[0])
# scale and shift the inputs
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
# query the network
outputs = n.query(inputs)
# the index of the highest value corresponds to the label
label = np.argmax(outputs)
# append correct or incorrect to list
if (label == correct_label):
score.append(1)
else:
score.append(0)
pass
pass
# module1 CORRECT-RATE
# calculate the score, the fraction of correct answers
score_array = np.asarray(score)
print("performance = ", score_array.sum() / score_array.size)
# module2 TEST MNIST
all_values = test_data_list[0].split(‘,‘)
print(all_values[0])
image_array = np.asfarray(all_values[1:]).reshape((28, 28))
plt.imshow(image_array, cmap=‘Greys‘, interpolation=‘None‘)
plt.show()
# module3 USE YOUR WRITING
# own image test data set
own_dataset = []
for image_file_name in gl.gl(r‘C:\Users\ELIO\Desktop\5.png‘):
print("loading ... ", image_file_name)
# use the filename to set the label
label = int(image_file_name[-5:-4])
# load image data from png files into an array
img_array = im.imread(image_file_name, as_gray=True)
# reshape from 28x28 to list of 784 values, invert values
img_data = 255.0 - img_array.reshape(784)
# then scale data to range from 0.01 to 1.0
img_data = (img_data / 255.0 * 0.99) + 0.01
print(np.min(img_data))
print(np.max(img_data))
# append label and image data to test data set
record = np.append(label, img_data)
print(record)
own_dataset.append(record)
pass
all_values = own_dataset[0]
print(all_values[0])链接:百度网盘
提取码:1vbq