大白配小猪 2019-11-15
两阶段数据清洗:
(1)第一阶段:把需要的信息从原始日志中提取出来
ip: 199.30.25.88
time: 10/Nov/2016:00:01:03 +0800
traffic: 62
文章: article/11325
视频: video/3235
(2)第二阶段:根据提取出来的信息做精细化操作
ip--->城市 city(IP)
date--> time:2016-11-10 00:01:03
day: 10
traffic:62
type:article/video
id:11325
(3)hive数据库表结构:
create table data( ip string, time string , day string, traffic bigint,
type string, id string )
初步实现数据的分割,没有对时间以及IP进行转换
原始数据:

分割后数据:

代码使用了之前wordcount样例进行修改,按照,进行了简单分割,但是分割后末尾会出现0,且没有进行数据的转换。
package result;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class Result1 {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Job job = Job.getInstance();
job.setJobName("WordCount");
job.setJarByClass(Result1.class);
job.setMapperClass(doMapper.class);
//job.setReducerClass(doReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
Path in = new Path("hdfs://192.168.187.130:9000/result/result.txt");
Path out = new Path("hdfs://192.168.187.130:9000/result/out");
FileInputFormat.addInputPath(job, in);
FileOutputFormat.setOutputPath(job, out);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
public static class doMapper extends Mapper<Object, Text, Text, IntWritable> {
public static final IntWritable one = new IntWritable();
public static Text word = new Text();
Text outputValue = new Text();
@Override
protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {
String line=value.toString();
String arr[]=line.split(",");
word.set(arr[0]+" "+arr[1]+" "+arr[2]+" "+arr[3]+" "+arr[4]+" "+arr[5]);
context.write(word,one);
}
}
}result1