tianhouquan 2015-05-19
Shuffle是MapReduce框架中的一个特定的phase,介于Map phase和Reduce phase之间,当Map的输出结果要被Reduce使用时,输出结果需要按key哈希,并且分发到每一个Reducer上去,这个过程就是shuffle。由于shuffle涉及到了磁盘的读写和网络的传输,因此shuffle性能的高低直接影响到了整个程序的运行效率。
下面这幅图清晰地描述了MapReduce算法的整个流程,其中shuffle phase是介于Map phase和Reduce phase之间。
概念上shuffle就是一个沟通数据连接的桥梁,那么实际上shuffle这一部分是如何实现的的呢,下面我们就以Spark为例讲一下shuffle在Spark中的实现。
先以图为例简单描述一下Spark中shuffle的整一个流程:
这里的bucket是一个抽象概念,在实现中每个bucket可以对应一个文件,可以对应文件的一部分或是其他等。
接下来我们分别从shuffle write和shuffle fetch这两块来讲述一下Spark的shuffle进化史。
在Spark 0.6和0.7的版本中,对于shuffle数据的存储是以文件的方式存储在block manager中,与rdd.persist(StorageLevel.DISk_ONLY)采取相同的策略。Spark在每一个Mapper中为每个Reducer创建一个bucket,并将RDD计算结果放进bucket中。需要注意的是每个bucket是一个ArrayBuffer,也就是说Map的输出结果是会先存储在内存。
接着Spark会将ArrayBuffer中的Map输出结果写入block manager所管理的磁盘中,这里文件的命名方式为:shuffle_ + shuffle_id + "_" + map partition id + "_" + shuffle partition id
早期的shuffle write有两个比较大的问题:
在Spark 0.8版本中,shuffle write采用了与RDD block write不同的方式,同时也为shuffle write单独创建了ShuffleBlockManager,部分解决了0.6和0.7版本中遇到的问题。
在这个版本中为shuffle write添加了一个新的类ShuffleBlockManager,由ShuffleBlockManager来分配和管理bucket。同时ShuffleBlockManager为每一个bucket分配一个DiskObjectWriter,每个write handler拥有默认100KB的缓存,使用这个write handler将Map output写入文件中。可以看到现在的写入方式变为buckets.writers(bucketId).write(pair),也就是说Map output的key-value pair是逐个写入到磁盘而不是预先把所有数据存储在内存中在整体flush到磁盘中去。
Spark 0.8显著减少了shuffle的内存压力,现在Map output不需要先全部存储在内存中,再flush到硬盘,而是record-by-record写入到磁盘中。同时对于shuffle文件的管理也独立出新的ShuffleBlockManager进行管理,而不是与rdd cache文件在一起了。
但是这一版Spark 0.8的shuffle write仍然有两个大的问题没有解决:
为了解决shuffle文件过多的情况,Spark 0.8.1引入了新的shuffle consolidation,以期显著减少shuffle文件的数量。首先我们以图例来介绍一下shuffle consolidation的原理:
需要注意的是当 M=C时shuffle consolidation所产生的文件数和之前的实现是一样的。
Shuffle consolidation显著减少了shuffle文件的数量,解决了之前版本一个比较严重的问题,但是writer handler的buffer开销过大依然没有减少,若要减少writer handler的buffer开销,我们只能减少Reducer的数量,但是这又会引入新的问题,下文将会有详细介绍。
Shuffle write写出去的数据要被Reducer使用,就需要shuffle fetcher将所需的数据fetch过来,这里的fetch包括本地和远端,因为shuffle数据有可能一部分是存储在本地的。Spark对shuffle fetcher实现了两套不同的框架:NIO通过socket连接去fetch数据;OIO通过netty server去fetch数据。分别对应的类是BasicBlockFetcherIterator和NettyBlockFetcherIterator。
在Spark 0.7和更早的版本中,只支持BasicBlockFetcherIterator,而BasicBlockFetcherIterator在shuffle数据量比较大的情况下performance始终不是很好,无法充分利用网络带宽,为了解决这个问题,添加了新的shuffle fetcher来试图取得更好的性能。对于早期shuffle性能的评测可以参看Spark usergroup。当然现在BasicBlockFetcherIterator的性能也已经好了很多,使用的时候可以对这两种实现都进行测试比较。
接下来说一下aggregator。我们都知道在Hadoop MapReduce的shuffle过程中,shuffle fetch过来的数据会进行merge sort,使得相同key下的不同value按序归并到一起供Reducer使用,这个过程可以参看下图:
所有的merge sort都是在磁盘上进行的,有效地控制了内存的使用,但是代价是更多的磁盘IO。
那么Spark是否也有merge sort呢,还是以别的方式实现,下面我们就细细说明:
首先虽然Spark属于MapReduce体系,但是对传统的MapReduce算法进行了一定的改变。Spark假定在大多数用户的case中,shuffle数据的sort不是必须的,比如word count,强制地进行排序只会使性能变差,因此Spark并不在Reducer端做merge sort。既然没有merge sort那Spark是如何进行reduce的呢?这就要说到aggregator了。
aggregator本质上是一个hashmap,它是以map output的key为key,以任意所要combine的类型为value的hashmap。当我们在做word count reduce计算count值的时候,它会将shuffle fetch到的每一个key-value pair更新或是插入到hashmap中(若在hashmap中没有查找到,则插入其中;若查找到则更新value值)。这样就不需要预先把所有的key-value进行merge sort,而是来一个处理一个,省下了外部排序这一步骤。但同时需要注意的是reducer的内存必须足以存放这个partition的所有key和count值,因此对内存有一定的要求。
在上面word count的例子中,因为value会不断地更新,而不需要将其全部记录在内存中,因此内存的使用还是比较少的。考虑一下如果是group by key这样的操作,Reducer需要得到key对应的所有value。在Hadoop MapReduce中,由于有了merge sort,因此给予Reducer的数据已经是group by key了,而Spark没有这一步,因此需要将key和对应的value全部存放在hashmap中,并将value合并成一个array。可以想象为了能够存放所有数据,用户必须确保每一个partition足够小到内存能够容纳,这对于内存是一个非常严峻的考验。因此Spark文档中建议用户涉及到这类操作的时候尽量增加partition,也就是增加Mapper和Reducer的数量。
增加Mapper和Reducer的数量固然可以减小partition的大小,使得内存可以容纳这个partition。但是我们在shuffle write中提到,bucket和对应于bucket的write handler是由Mapper和Reducer的数量决定的,task越多,bucket就会增加的更多,由此带来write handler所需的buffer也会更多。在一方面我们为了减少内存的使用采取了增加task数量的策略,另一方面task数量增多又会带来buffer开销更大的问题,因此陷入了内存使用的两难境地。
为了减少内存的使用,只能将aggregator的操作从内存移到磁盘上进行,Spark社区也意识到了Spark在处理数据规模远远大于内存大小时所带来的问题。因此PR303提供了外部排序的实现方案,相信在Spark 0.9 release的时候,这个patch应该能merge进去,到时候内存的使用量可以显著地减少。