ustbfym 2019-12-09
EM 算法,全称 Expectation Maximization Algorithm。期望最大算法是一种迭代算法,用于含有隐变量(Hidden Variable)的概率参数模型的最大似然估计或极大后验概率估计。
我们假设学校男生和女生分别服从两种不同的正态分布,即男生 ,女生 ,(注意:EM算法和极大似然估计的前提是一样的,都要假设数据总体的分布,如果不知道数据分布,是无法使用EM算法的)。那么该怎样评估学生的身高分布呢?
简单啊,我们可以随便抽 100 个男生和 100 个女生,将男生和女生分开,对他们单独进行极大似然估计。分别求出男生和女生的分布。
假如某些男生和某些女生好上了,纠缠起来了。咱们也不想那么残忍,硬把他们拉扯开。这时候,你从这 200 个人(的身高)里面随便给我指一个人(的身高),我都无法确定这个人(的身高)是男生(的身高)还是女生(的身高)。用数学的语言就是,抽取得到的每个样本都不知道是从哪个分布来的。那怎么办呢?
这个时候,对于每一个样本或者你抽取到的人,就有两个问题需要估计了,一是这个人是男的还是女的,二是男生和女生对应的身高的正态分布的参数是多少。这两个问题是相互依赖的:
但是现在我们既不知道每个学生是男生还是女生,也不知道男生和女生的身高分布。这就成了一个先有鸡还是先有蛋的问题了。鸡说,没有我,谁把你生出来的啊。蛋不服,说,没有我,你从哪蹦出来啊。为了解决这个你依赖我,我依赖你的循环依赖问题,总得有一方要先打破僵局,不管了,我先随便整一个值出来,看你怎么变,然后我再根据你的变化调整我的变化,然后如此迭代着不断互相推导,最终就会收敛到一个解(草原上的狼和羊,相生相克)。这就是EM算法的基本思想了。
EM的意思是“Expectation Maximization”,具体方法为:
先设定男生和女生的身高分布参数(初始值),例如男生的身高分布为 , 女生的身高分布为 ,当然了,刚开始肯定没那么准;
然后计算出每个人更可能属于第一个还是第二个正态分布中的(例如,这个人的身高是180,那很明显,他极大可能属于男生),这个是属于Expectation 一步;
我们已经大概地按上面的方法将这 200 个人分为男生和女生两部分,我们就可以根据之前说的极大似然估计分别对男生和女生的身高分布参数进行估计(这不变成了极大似然估计了吗?极大即为Maximization)这步称为 Maximization;
然后,当我们更新这两个分布的时候,每一个学生属于女生还是男生的概率又变了 ,那么我们就再需要调整E步;
……如此往复,直到参数基本不再发生变化或满足结束条件为止。
上面的学生属于男生还是女生我们称之为隐含参数,女生和男生的身高分布参数称为模型参数。
EM 算法解决这个的思路是使用启发式的迭代方法,既然我们无法直接求出模型分布参数,那么我们可以先猜想隐含参数(EM 算法的 E 步),接着基于观察数据和猜测的隐含参数一起来极大化对数似然,求解我们的模型参数(EM算法的M步)。由于我们之前的隐含参数是猜测的,所以此时得到的模型参数一般还不是我们想要的结果。我们基于当前得到的模型参数,继续猜测隐含参数(EM算法的 E 步),然后继续极大化对数似然,求解我们的模型参数(EM算法的M步)。以此类推,不断的迭代下去,直到模型分布参数基本无变化,算法收敛,找到合适的模型参数。
一个最直观了解 EM 算法思路的是 K-Means 算法。在 K-Means 聚类时,每个聚类簇的质心是隐含数据。我们会假设 K 个初始化质心,即 EM 算法的 E 步;然后计算得到每个样本最近的质心,并把样本聚类到最近的这个质心,即 EM 算法的 M 步。重复这个 E 步和 M 步,直到质心不再变化为止,这样就完成了 K-Means 聚类。
参考链接:
https://blog.csdn.net/lin_limin/article/details/81048411
https://zhuanlan.zhihu.com/p/36331115