heavstar 2019-07-01
RDS性能降低 - 复盘 - Honeycomb
原文:https://www.honeycomb.io/blog...
译:祝坤荣
注:除非特别说明,所有时间都是UTC。
5月3号周四, 从00:39:08 UTC(周三 17:39 PDT)我们经历了一次Honeycomb服务的大约24分钟的彻底停机。大部分服务恢复时间是2018-05-03 01:02:49,所有面向客户的服务恢复是在01:07:00。
我们对这次停机影响的每一个客户都十分抱歉。我们对于数据的管理十分认真,并通过对系统的多项改进措施来确保未来这类的停机事件不会造成数据丢失,并确保我们在类似的失败中可以更快的恢复。
事后看,故障链只有4点连通:
恢复部分很快:
我们如何得到答案的故事是一个如何使用Honeycomb来debug生产系统的有趣的例子。
在之后第二天早上我们的复盘会议上,两个理论摆在桌上:
我们担心一些bug隐藏在我们的应用里(或我们使用的其中一个Go库)导致我们的应用在不能连接数据库时关机,这样在同样情况再发生时又会导致一样的停机故障。
每个人都同意这很像是下层数据库的问题(存储,CPU或连接)是根因,但我们也同意如果我们以抱怨网络的方式忽略一个潜在应用级的bug会更有危险。
作为开发者的责任:这可能不是数据库,而可能是你的代码问题。
为了降低风险,我们决定在受控环境来重现Error 1040场景并观察系统表现。在我们的实验集群上重现连接池溢出清楚的表明了连接满确实会影响应用并导致定时任务失败,它不会导致失控的CPU或延迟升高。
我们现在有两个数据集:生产的停机和实验用的。由于我们使用Honeycomb来观察Honeycomb,所以在这个例子对比A和B很容易
实验生产停机
左边,实验集群从12:30到13:23(除了一些失败的定时任务很难看出证据)运行,而在右边,生产的停机很清楚地显示着。实验有个空结果:我们没有发现 Error 1040导致了停机。看起来像是系统的一些底层问题导致的。
有了这个信息,我们需要在生产数据上挖掘的更深入了。由于Honeycomb数据集是高保真的(我们不做任何聚合或预先的计算),可以将数据调整到每秒级别并调整数据来抽取模式。这里是从rdslogs里记录的性能数据。
有15秒没有活动,然后有一批query_time值达到了15秒的完成动作,看起来很明显。在结束时的性能异常也有一个有意思的热力图模式:
概括下,数据展示了高于23分钟的低吞吐,高延迟行为,并持续了少于30秒切换区域,之前是正常的高吞吐,低延迟,尖峰应用驱动的行为,接着是大量的追赶事件,最后切换到正常的高吞吐模式。
由于这不是一个全面的根因分析,但对于我们明确问题在数据库系统而不是我们的应用代码已经够了;我们的应用看起来运行正常。我们之后再SQL的normalized_query字符串上验证了我们的代码在恢复过程中工作符合预期。
得到这些信息后我们重新调查了我们的RDS配置并确认
00:39 – outage starts
00:40 – first alert
00:42 – engineers start investigation
00:50 – escalation, multiple investigators looking at several potential avenues
00:55 – status.honeycomb.io updated to keep our customers informed
00:58 – first engineering interventions to attempt to heal system, minimal impact
01:03 – outage resolution starts
01:04:23 – resolution completes, system stabilized
01:15 – engineers conclude that outage is resolved, update status.honeycomb.io
本文来自微信公众号「麦芽面包,id「darkjune_think」转载请注明。
交流Email: [email protected]