neverstopforcode 2018-08-09
摘要: Eric Evans的《领域驱动设计》问世已经14年之久,到今天几乎所有业务团队都或多或少有涉及DDD。然而较真起来会发现,认真遵循DDD设计原则的团队仅是少数,多数团队的现状依然是: **数据库关系=模型。** # 贫血模型 DDD崇尚充血模型,对以关系型数据库为中心的贫血模型则甚至可以用鄙夷形容。Martin Fowler在《企业应用架构模式》书中有系统谈过贫血模型, > 他定义“
Eric Evans的《领域驱动设计》问世已经14年之久,到今天几乎所有业务团队都或多或少有涉及DDD。然而较真起来会发现,认真遵循DDD设计原则的团队仅是少数,多数团队的现状依然是:
数据库关系=模型。
DDD崇尚充血模型,对以关系型数据库为中心的贫血模型则甚至可以用鄙夷形容。Martin Fowler在《企业应用架构模式》书中有系统谈过贫血模型,
他定义“贫血模型”是反模式,简单系统使用它开发没问题,而对于复杂业务,业务逻辑、各种状态散布在大量的函数中,维护扩展的成本会变得很高。
假设有业务场景--向购物车添加商品,使用贫血模型代码如下:
绝大多数人都应该会有类似代码的编写经历,最常见在经典三分层架构中的Service层,它本质上就是一个类存储过程,对其执行过程做翻译,就是一个三条SQL组成的业务逻辑:
业务处理像是在有序执行一条条sql,老外给它取了一个好听的名字叫事务脚本。事务脚本是非常典型的过程式表述,它近似是串联sql完成一段完整的业务,可以用个数学公式来定义即事务脚本=∑fi,fi代指一条sql。
假设内存无限大且永不宕机,即已经没有持久化必要,换句话说完全可以不使用数据库,此时应该如何编写代码?
Jdk以及各类优秀中间件都是以内存操作为主,可以参考它们的选择:即便是主推pojo规范的ejb都没有选择贫血模型,反而是极度充血-- 暴露一组行为给外部,由外力驱动对象变化。
数据持久化应只被当成是程序的暂停而非结束,对暂停而言,下一次再执行时需要忠实还原对象的上次执行后状态,而对结束则下一次是一个新的开始。即load; do; 和new; setter/getter; persist的区别。如果从这个角度出发,对象就变得近似是常驻在内存。
在Vaughn Vernon的《实现领域驱动设计》中关于“六边形架构”如何在领域实践应用中已经阐述很清楚:
数据库仅仅只是Domain Model的右向适配(被驱动者)。
数据库只是持久化手段,是一种基础设施,不该作为指导程序运行的模型。写代码时要时刻保持一种警惕,如果把关系型数据库替换成json、普通文本或者无schema的nosql数据库,要如何保证逻辑层的无感?
正确的方法是以对象和对象联系而非数据库表关系作为指导程序运行的基础。一次完整的业务操作由各实体对象行为协同完成,结果最终会反映在内存中各对象实例的内在属性上。这样无论怎么修改持久化方案,都只需要改变与特定持久化方案的适配策略。
某逆向交替系统,其逆向状态是记录在正向交易上的,
| order_id | order_status |pay_fee|item_id|refund_amount |refund_status|attributes|...... |
refund_amount和refund_status分别代表逆向退款金额以及退款状态。很显然,这样的表设计会导致两个问题:1) 无法多次逆向,前一次状态在下一次发起后被覆盖,即逆向无法追溯;2)逆向需要更新交易订单属性,方式是调用交易接口更新,因此某些情况下可能会有乐观锁问题-- 逆向更新了锁版本导致交易再去更新失败。
在小规模试跑阶段,业务上会严格限制一笔订单一次逆向,同时对于乐观锁问题采用多次重试机制,因此问题并不明显。逐渐的业务开始起来,首先业务量大之后重试导致的性能问题凸显-- 在加事务的情况下,数据库连接是一直持有直到提交或回滚,多次重试相当于增加了几倍持有连接时间,因此会明显明显降低数据库吞吐;其次,对于不能多次逆向合作伙伴也开始有反弹。因此交易和逆向的表拆分变得势在必行。
因为逆向在设计时使用了充血模型+六边形架构,实际上迁移并没有很大工作量,只是重新建了表,然后对数据库适配进行修改,将输出表由A指向B。
而如果使用贫血模型,在对表结构做了较大变更后,则一定会要修改逻辑代码。可以使用事务脚本的公式做个逆向推导:
表变化=sql变化=事务脚本(逻辑执行)变化。
贫血模型的本质是反oo的,是数据库关系对代码的入侵,是先假定关系已经存在再想办法把执行逻辑映射到关系上,最终收口就落在了数据库,而非程序本身,各service最终都会变成一根冗长枯燥难读的“面条”。这是”修改一处,全量回归“的悲剧源头,也是代码写久后枯燥、无聊、觉得都是重复劳动的源头,过程式代码是不需要设计更不需要模式的。
作者:鹰波