要搞懂 Elasticsearch Match Query,看这篇就够了

csmnjk 2019-06-29

引言

昨天是感恩节,上幼儿园的女儿在老师的叮嘱下,晚上为我和老婆洗了脚(形式上的^_^),还给我们每人端了一杯水。看着孩子一天天的长大,懂事,感觉很开心,话说咱们程序员这么辛苦是为了什么?不就是为了老婆,孩子,热炕头,有一个温暖幸福的家庭,再捎带着用代码改变一下世界吗?想到这里,顿时觉得学习,创作博客的劲头也的更足了。哈哈,扯远了,书归正传,今天我们来聊聊 Match Query。

Match Query 是最常用的 Full Text Query 。无论需要查询什么字段, match 查询都应该会是首选的查询方式。它既能处理全文字段,又能处理精确字段。

构建示例

为了能够在后面能深入理解 Match Query 中的各个属性的意义,我们先构建一个 index 示例(有兴趣的同学只要将下面字段粘贴到 sense 中就可以创建)。

PUT matchtest
{ 
}

PUT matchtest/_mapping/people
{
  "properties": {
    "age": {
      "type": "integer"
    },
    "hobbies": {
      "type": "text"
    },
    "name": {
      "type": "keyword"
    }
  }
}

PUT matchtest/people/1
{
  "name" : "Jim",
  "age": 10,
  "hobbies": "football, basketball, pingpang"
}


PUT matchtest/people/2
{
  "name" : "Tom",
  "age": 12,
  "hobbies": "swimming, football"
}

match

operator 参数

match 查询是一种 bool 类型的查询。什么意思呢?举个例子,查询 people type 的 hobbies 为 football basketball

GET matchtest/people/_search
{
  "query": {
    "match": {
      "hobbies": "football basketball"
    }
  }
}

会将上面的两个文档都搜索出来。为什么?上面的查询其实隐藏了一个默认参数operator , 它的默认值是 or ,也就是说上面的查询也可以写成这种形式

GET matchtest/people/_search
{
  "query": {
    "match": {
      "hobbies": {
        "query": "football basketball",
        "operator": "or"
      }
    }
  }
}

这样就比较容易理解了,既然是 or 操作符,就表示只要查询的文档的 hobbies 字段中含有 footballbasketball 任意一个,就可以被匹配到。

如果将 operator 操作符的值改为 and ,则表示需要同时包含 footballbasketball , 得到的结果就只能是 文档 1 Jim 小朋友了。

analyzer

analyzer 属性是指在对查询文本分析时的分析器

  • 如果没有指定则会使用字段mapping 时指定的分析器
  • 如果字段在 mapping 时也没有明显指定,则会使用默认的 search analyzer。

这里我们也没有指定,就会使用默认的,就不举例了,在后面文章讲解 analyzer 时再拓展。

lenient 参数

默认值是 false , 表示用来在查询时如果数据类型不匹配且无法转换时会报错。如果设置成 true 会忽略错误。

例如, 例子中的 ageinteger 类型的,如果查询 age=xxy ,就会导致无法转换而报错。

GET matchtest/_search
{
  "query": {
    "match": {
      "age" : {
        "query": "xxx"
      }
    }
  }
}

而如果将 lenient 参数设置为 true ,就会忽略这个错误

GET matchtest/_search
{
  "query": {
    "match": {
      "age" : {
        "query": "xxx",
        "lenient": true
      }
    }
  }
}

注意,如果将 age 字段的值设置为字符串 "10", 来查询,由于能够转换成整数,这时 elastic 内部会将 字符串先转换成整数再做查询,不会报错。

Fuzziness

fuzzniess 参数

fuzziness 参数可以是查询的字段具有模糊搜索的特性。来先了解下什么是模糊搜索。

什么是模糊搜索?

模糊搜索是指系统允许被搜索信息和搜索提问之间存在一定的差异,这种差异就是“模糊”在搜索中的含义。例如,查找名字Smith时,就会找出与之相似的Smithe, Smythe, Smyth, Smitt等。

——百度百科

通过模糊搜索可以查询出存在一定相似度的单词,那么怎么计算两个单词是否有相似度以及相似度的大小呢?这就要了解下另外一个概念:Levenshtein Edit Distance

Levenshtein Edit Distance

Levenshtein Edit Distance 叫做莱文斯坦距离**,是编辑距离的一种。指两个字串之间,由一个转成另一个所需的最少编辑操作次数。允许的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。

例如,单词 "god" 只需要插入一个 'o' 字符就可以变为 "good",因此它们之间的编辑距离为 1。

fuzziness 参数取值规则

了解了上面两个概念,回过头再来看下 fuzziness 参数。

在查询 text 或者 keyword 类型的字段时, fuzziness 可以看做是莱文斯坦距离。

fuzziness 参数的取值如下

  • 0,1,2 表示最大可允许的莱文斯坦距离
  • AUTO

    会根据词项的长度来产生可编辑距离,它还有两个可选参数,形式为AUTO:[low],[high], 分别表示短距离参数和长距离参数;如果没有指定,默认值是 AUTO:3,6 表示的意义如下

    • 0..2

      单词长度为 0 到 2 之间时必须要精确匹配,这其实很好理解,单词长度太短是没有相似度可言的,例如 'a' 和 'b'。

    • 3..5

      单词长度 3 到 5 个字母时,最大编辑距离为 1

    • >5

      单词长度大于 5 个字母时,最大编辑距离为 2

最佳实践: fuzziness 在绝大多数场合都应该设置成 AUTO

如果不设置 fuziness 参数,查询是精确匹配的。

来看例子,上面创建了一个 doc

PUT matchtest/people/1
{
  "name" : "Jim",
  "age": 10,
  "hobbies": "football, basketball, pingpang"
}

设置 fuzzinessAUTO

  • 其中 hobbies 字段的值 football 长度 > 5, 此时我们找一个编辑距离为 2 的单词 footba22 来查询,应该匹配到
  • 其中 name 字段的值 jim 长度在 3 和 5 之间,此时找一个编辑距离为 1 的单词 jiO 应匹配到,而编辑距离为 2 的 jOO 就不应匹配到。

来,验证下

GET matchtest/_search
{
  "query": {
    "match": {
      "hobbies": {
        "query": "footba22",
        "fuzziness": "AUTO"
      }
    }
  }
}

GET matchtest/_search
{
  "query": {
    "match": {
      "name": {
        "query": "jiO",
        "fuzziness": "AUTO"
      }
    }
  }
}


GET matchtest/_search
{
  "query": {
    "match": {
      "name": {
        "query": "jOO",
        "fuzziness": "AUTO"
      }
    }
  }
}

prefix_length

prefix_length 表示不能没模糊化的初始字符数。由于大部分的拼写错误发生在词的结尾,而不是词的开始,使用 prefix_length 就可以完成优化。注意 prefix_length 必须结合 fuzziness 参数使用。

例如,在查询 hobbies 中的 football 时,将 prefix_length 参数设置为 3,这时 foatball 将不能被匹配。

GET matchtest/_search
{
  "query": {
    "match": {
      "hobbies": {
        "query": "foatball",
        "fuzziness": "AUTO",
        "prefix_length": 3
      }
    }
  }
}

TODO(max_expansions 参数对于 match 查询而言,没理解表示的意义,如果您知道这个参数的用法,请给我留言告知,不胜感谢! )

Zero terms Query

先看例子, 先创建一个文档 zero_terms_query_test 其中 message 字段使用 stop 分析器,这个分析器会将 stop words 停用词在索引时全都去掉。

PUT matchtest1

PUT matchtest1/_mapping/zero_terms_query_test
{
  "properties": {
    "message": {
      "type": "text",
      "analyzer": "stop"
    }
  }
}


PUT matchtest1/zero_terms_query_test/1
{
  "message": "to be or not to be"
}

GET matchtest1/_search
{
  "query": {
    "match": {
      "message": {
        "query": "to be or not to be",
        "operator": "and",
        "zero_terms_query": "none"
      }
    }
  }
}

那么就像 message 字段中的 to be or not to be 这个短语中全部都是停止词,一过滤,就什么也没有了,得不到任何 tokens, 那搜索时岂不什么都搜不到。

POST _analyze
{
  "analyzer": "stop",
  "text": "to be or not to be"
}

zero_terms_query 就是为了解决这个问题而生的。它的默认值是 none ,就是搜不到停止词(对 stop 分析器字段而言),如果设置成 all ,它的效果就和 match_all 类似,就可以搜到了。

GET matchtest1/_search
{
  "query": {
    "match": {
      "message": {
        "query": "to be or not to be",
        "operator": "and",
        "zero_terms_query": "all"
      }
    }
  }
}

Cutoff frequency

查询字符串时的词项会分成低频词(更重要)和高频词(次重要)两类,像前面所说的停用词 (stop word)就属于高频词,它虽然出现频率较高,但在匹配时可能并不太相关。实际上,我们往往是想要文档能尽可能的匹配那些低频词,也就是更重要的词项

要实现这个需求,只要在查询时配置 cutoff_frequency 参数就可以了。假设我们将 cutoff_frequency 设置成 0.01 就表示

  • 任何词项在文档中超过 1%, 被认为是高频词
  • 其他的词项会被认为低频词

从而将高频词(次重要的词)挪到可选子查询中,让它们只参与评分,而不参与匹配;高频词(更重要的词)参与匹配和评分。

这样一来,就不再需要 stopwords 停用词文件了,从而变成了动态生成停用词: 高频词就会被看做是停用词。这种配置只是对于词项比较多的场合如 email body,文章等适用,文字太少, cutoff_frequency 选项设置的意义就不大了。

cutoff_frequency 配置有两种形式

  • 指定为一个分数( 0.01 )表示出现频率
  • 指定为一个正整数( 5 )则表示出现次数

下面给个例子, 在创建的 3 个文档中都包含 "be " 的单词,在查询时将 cutoff_frequency 参数设置为 2, 表示 "be" 就是高频词,只会参与评分,但在匹配时不做考虑。

此时查询的内容为 "to be key" ,由于 "be" 词项是高频词,因为在文档中必须要存在 "to" 或者 "key" 才能匹配,因此文档 3 不能匹配。

PUT /matchtest2

PUT matchtest2/_mapping/cutoff_frequency_test
{
  "properties": {
    "message": {
      "type": "text"
    }
  }
}

PUT matchtest2/cutoff_frequency_test/1
{
  "message": "to be or not to be to be or"
}

PUT matchtest2/cutoff_frequency_test/2
{
  "message": "be key or abc"
}

PUT matchtest2/cutoff_frequency_test/3
{
  "message": "or to be or to to be or"
}

GET matchtest2/_search
{
  "query": {
    "match": {
      "message": {
        "query": "to be key",
        "cutoff_frequency": 2
      }
    }
  }
}

synonyms

synonyms 是指同义词,只要索引和字段中配置了同义词过滤器,match 查询是支持多词条的同义词扩展的。在应用过滤器后,解析器会对每个多次条同义词创建一个语句查询。

例如,同义词 USA, united states of America 就会构建出 (USA OR ("united states of America"))。看下面例子:

PUT /matchtest4
{
    "settings": {
        "index" : {
            "analysis" : {
                "analyzer" : {
                    "synonym" : {
                        "tokenizer" : "whitespace",
                        "filter" : ["synonym"]
                    }
                },
                "filter" : {
                    "synonym" : {
                        "type" : "synonym",
                        "synonyms" : [
                            "USA, united states of America"
                        ]
                    }
                }
            }
        }
    }
}

PUT /matchtest4/_mapping/synonyms_test
{
  "properties": {
    "message": {
      "type": "text",
      "analyzer": "synonym"
    }
  }
}

PUT /matchtest4/synonyms_test/1
{
  "message": "united states of America people"
}


GET /matchtest4/_search
{
  "query": {
    "match": {
      "message": {
        "query": "USA"
      }
    }
  }
}

小结

本文以代码实例的方式完整的讲解了 Match Query 的各种使用场景和参数意义。下篇会讲解 Match Phrase Query 敬请期待。

参考文档

传送门

相关推荐