Python进程间通信Queue消息队列用法分析

明天你好 2019-05-22

本文实例讲述了Python进程间通信Queue消息队列用法。分享给大家供大家参考,具体如下:

进程间通信-Queue

Process之间有时需要通信,操作系统提供了很多机制来实现进程间的通信。

1. Queue的使用

可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示下Queue的工作原理:
代码如下:

#coding=utf-8
from multiprocessing import Queue
#初始化一个Queue对象,最多可接收三条put消息
q = Queue(3)
q.put('消息1')
q.put('消息2')
print(q.full())#False
q.put('消息3')
print(q.full())#True
#因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常
try:
  q.put('消息4', True, 2)
except:
  print('消息队列已满,现有消息数量:%s'%q.qsize())
try:
  q.put_nowait('消息4')#等同于q.put('消息4', False)
except:
  print('消息队列已满,现有消息数量:%s'%q.qsize())
#推荐的方式,先判断消息列队是否已满,再写入
if not q.full():
  q.put_nowait('消息4')
#读取消息时,先判断消息列队是否为空,再读取
if not q.empty():
  for i in range(q.qsize()):
    print(q.get_nowait())

运行结果:

False
True
消息队列已满,现有消息数量:3
消息队列已满,现有消息数量:3
消息1
消息2
消息3

说明

初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头);

Queue.qsize():返回当前队列包含的消息数量;
Queue.empty():如果队列为空,返回True,反之False ;
Queue.full():如果队列满了,返回True,反之False;
Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从列队中移除,block默认值为True;

1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出”Queue.Empty”异常;

2)如果block值为False,消息列队如果为空,则会立刻抛出”Queue.Empty”异常;
Queue.get_nowait():相当Queue.get(False);
Queue.put(item,[block[, timeout]]):将item消息写入队列,block默认值为True;

1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写⼊状态),直到从消息列队腾出空间为止。如果设置了timeout,则会等待timeout秒,若还没空间,则抛出”Queue.Full”异常;

2)如果block值为False,消息列队如果没有空间可写入则会立刻抛出”Queue.Full”异常;

Queue.put_nowait(item):相当Queue.put(item, False);

2. Queue实例

我们以Queue为例,在子进程中创建两个子进程,一个往Queue中写数据,一个从Queue中读数据:

#coding=utf-8
from multiprocessing import Queue, Process
import time, random, os
#写数据进程执行的代码
def write(q):
  l1 = ['A','B','C']
  for value in l1:
    print('put %s to queue...'%value)
    q.put(value)
    time.sleep(random.random())
#读数据执行的代码
def read(q):
  while True:
    if not q.empty():
      value = q.get(True)
      print('get %s from queue...' % value)
      time.sleep(random.random())
    else:
      break
if __name__ == "__main__":
  #父进程创建Queue,并传给各个子进程
  q = Queue()
  qw = Process(target=write, args=(q,))
  qr = Process(target=read, args=(q,))
  #启动子进程qw写入
  qw.start()
  qw.join()
  # 启动子进程qr写入
  qr.start()
  qr.join()
  # qr进程是死循环,无法等待其结束,只能强行终止:
  print('所有数据都已经写入并读取完毕')

运行结果:

put A to queue...
put B to queue...
put C to queue...
get A from queue...
get B from queue...
get C from queue...
所有数据都已经写入并读取完毕

3. 进程池中的Queue

如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:

RuntimeError: Queue objects should only be shared between processes
through inheritance.

下面的实例演示了进程池中的进程如何通信:

代码如下:

#coding=utf-8
from multiprocessing import Manager, Pool
import time, random, os
def writer(q):
  print('writer启动%s,父进程为%s'%(os.getpid(),os.getppid()))
  l1 = ['a','b','c','d','e']
  for value in l1:
    q.put(value)
def reader(q):
  print('reader启动%s,父进程为%s'%(os.getpid(),os.getppid()))
  for i in range(q.qsize()):
    print('reader从Queue获取到消息:%s'%q.get(True))
if __name__ == "__main__":
  print('父进程%s启动...'%os.getpid())
  q = Manager().Queue() #使用Manager中的Queue来初始化
  po = Pool()
  # 使用阻塞模式创建进程,这样就不需要在reader中使用死循环了,可以让writer完全执行完成后,再用reader去读取
  po.apply(writer, (q,))
  po.apply(reader, (q,))
  po.close()
  po.join()
  print('%s结束'%os.getpid())

运行结果:

父进程7415启动...
writer启动7421,父进程为7415
reader启动7422, 父进程为7415
reader从Queue获取到消息:a
reader从Queue获取到消息:b
reader从Queue获取到消息:c
reader从Queue获取到消息:d
reader从Queue获取到消息:e
7415结束

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

相关推荐