使用pandas对矢量化数据进行替换处理的方法

i徒然 2018-04-11

使用pandas处理向量化的数据,进行数据的替换时不仅仅能够进行字符串的替换也能够处理数字。

做简单的示例如下:

In [4]: data = Series(range(5))
In [5]: data
Out[5]: 
0  0
1  1
2  2
3  3
4  4
dtype: int64
In [6]: data.replace(3,333)
Out[6]: 
0   0
1   1
2   2
3  333
4   4
dtype: int64
In [7]: data
Out[7]: 
0  0
1  1
2  2
3  3
4  4
dtype: int64
In [8]: data.replace({2:np.nan,4:444})
Out[8]: 
0   0.0
1   1.0
2   NaN
3   3.0
4  444.0
dtype: float64

从上面可以看出,替换可以进行单个数字的替换,也可以穿入一个字典进行一个序列的替换。

简单的替换虽然也可以通过赋值进行修改,但是通过赋值进行修改的时候一般首先得进行数据替换对象的查找。但是,通过Series对象的replace方法进行数据替换的方便之处则在于省掉了数据对象的查询。

相关推荐