从宇宙背景去看, 不确信性原理和互补原理, 广泛适用!

DavidsCorner 2018-01-18

导读:本文摘自独立学者灵遁者物理宇宙科普书籍《变化》。旨在帮助大家了解物理宇宙科普知识。

广义相对论实质上就是一种引力理论,这一点很明显。我们知道广义相对论是阿尔伯特·爱因斯坦于1915年发表的用几何语言描述的引力理论,它代表了现代物理学中引力理论研究的最高水平。广义相对论将经典的牛顿万有引力定律包含在狭义相对论的框架中,并在此基础上应用等效原理而建立。

从宇宙背景去看, 不确信性原理和互补原理, 广泛适用!

从广义相对论得到的有关预言和经典物理中的对应预言非常不相同,尤其是有关时间流逝、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——虽说广义相对论并非当今描述引力的唯一理论,它却是能够与实验数据相符合的最简洁的理论。

从宇宙背景去看, 不确信性原理和互补原理, 广泛适用!

不过,仍然有一些问题至今未能解决,典型的即是如何将广义相对论和量子物理的定律统一起来,从而建立一个完备并且自洽的量子引力理论。这也是当前物理学家在苦苦探索的东西。

我个人认为广义相对论和量子学是自洽的,是相容的。我们都知道互补原理和不确定原理是量子学的两大支柱。

互补原理表明:波和粒子在同一时刻是互斥的,但它们在更高层次上统一。

而不确定性原理表明:粒子的位置与动量不可同时被确定。

灵遁者物理宇宙科普书籍《变化》在灵遁者淘宝有。

从宇宙背景去看, 不确信性原理和互补原理, 广泛适用!

而宇宙物质引力场和引力场中的质点也同样遵从互补原理和不确定原理。为什么这么说呢?

我们来这样想象:地球作为一个质点存在于宇宙空间中,而地球的的上下左右四方,层层密布的又分布着千千万万个类地球的质点。且远近不同的分布着。由于万有引力他们相互形成一个巨大“引力场海洋。”便于理解,我们将它比喻为一块浮动的超级大海。

由于类地球的质点,在我们看来很大。好像可以同时测定另一个质点【比如金星】的位置和动量。其实这是一种假象,我们根本测不准他的位置或者动量。即使非常精准的仪器也不可以。当然这个推论的前提是大尺度下【宇宙背景下】运动而且不是单个引力质点【地球】与引力质点【金星】的问题。

举一个很简单的例子,你能测的准西湖下一秒湖面的波纹的情况吗?我相信即使现在最最精致的仪器或者理论也无法测的准。整个西湖下一秒湖面波纹的情况,受到的影响因素是无穷的,是我们不可能一一掌握的。比如湖岸边的形状,湖里的荷花,湖里的水生物的游动,湖面四周的空气运动,甚至地球的转动等等都使得不可能完成这样的测量。那么上面所说的地球和金星,就相当于西湖湖面飘着的小不点。

从宇宙背景去看, 不确信性原理和互补原理, 广泛适用!

同理处于宇宙引力场海洋的无数的质点,处于飘摇状态。引力场海洋时刻在变化。比如说1光年外的一颗恒星爆发类似太阳风的活动。那么引力场均衡就被打破,而且以光速迅速再次形成引力场均衡。而我们的观察显示,它的活动,好像并没有影响到金星。可是实际影响已经发生了。而正是这样的原因,使得宇宙中的质点的确切位置和动量、能量不可能被同时测的准,“准”是相对而言的。即这样的测量是“相对”测量。即相对位置和相对动量。

在这里要补充的一点是文中的“引力场均衡”实际并不存在。是为了描述方便,描述形象而使用的词。

而互补性原理也是。一方面物质引力使得他们形成庞大的引力场海洋,紧密联系在一起,而且质点就好像镶砌在这块超级大海绵之上,这样的状态,使他门具有保持原来运动状态的性质。而另一方面引力也使得质点们彼此“撕扯”或“吸引”对方。所以整体是使得物质具有惯性,而在整体中的个体和个体的相互作用使得它能被测出具体的“引力大小。”

比如我认为引力坍缩不仅与恒星本身有关,更与引力场均衡被破坏,不断重新建立有关。这样我们难道不是把广义相对论和量子学联系到一起了吗!

而且我们知道规范场论已经把电磁力和弱相互作用和强相互作用统一了。那么现在我们是该考虑将引力场纳入其中。

我知道广义相对论和量子学都是用高度的数学形式来展示的。本人根本无法看懂这种高度的数学形式。关于拓扑学,非欧几何,黎曼几何等在相对论中经常出现的知识内容,我是不懂的。

从宇宙背景去看, 不确信性原理和互补原理, 广泛适用!

但是至少从现在的广义相对论数学形式中,看不到我刚才所说的。我个人认为有两种原因。第一种原因是在一个系统中我们无法判断这个系统本身的运动状态。而且我们的观测手段和仪器也不够发达到观测上面所说的宇宙引力海洋。

第二种原因就是没有深刻理解引力和惯性,从而导致我们在写数学形式的时候,思维不同,导出的方程式不同。

因为广义相对论建立的前提条件是没有问题的。等效原理也是成立的。因为引力是惯性的源泉!!

从宇宙背景去看, 不确信性原理和互补原理, 广泛适用!

我深深知道对于一个理论如果你不能深刻的演化它,用数学工具去推理它,你就很难理解它。这一点我在高中学习牛顿经典力学的时候就认识到了。可是我现在只能深深的叹息,却对用数学语言描述我刚才说的东西,力不从心。

我知道除通过广义相对论描写的引力外,至今所有其它物理基本相互作用均可以在量子力学的框架内描写(量子规范场论,我上面有提到的)。 而我在上面所做的“自恰“解释,是否是广义相对论和量子场论的桥梁,主要取决于如何用“量子”观点解释广义相对论。

兴趣阅读:你就是下一个牛顿!

从宇宙背景去看, 不确信性原理和互补原理, 广泛适用!

艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》,《光学》。

他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。

在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。

在经济学上,牛顿提出金本位制度。所以牛顿是我们崇拜的对象,我们会永远记住他这样的天才!

相关推荐