鹤之淇水 2019-03-08
快速排序(quick sort)的采用了分治的策略。
先来看一个 我更想称之为伪快排的快排代码:
def quick_sort(array): if len(array) < 2: return array else: pivot = array[0] less_than_pivot = [x for x in array if x <= pivot] more_than_pivot = [x for x in array if x > pivot] return quick_sort(less_than_pivot) + [pivot] + quick_sort(more_than_pivot)
这段代码最关键的是pivot这个参数,这段代码里取序列的第一个元素,然后以这个元素为分组的基准,利用列表解析式使得它左边的值都比它小,右边的值都比它大。然后再分别对这些序列进行递归排序。
这段代码虽然短小利于理解,但是其效率很低,主要体现在以下方面:
下面用Python写一个C风格的快排(这里可以体会到快排的精髓):
def quick_sort(L): return q_sort(L, 0, len(L) - 1) def q_sort(L, left, right): if left < right: pivot = Partition(L, left, right) q_sort(L, left, pivot - 1) q_sort(L, pivot + 1, right) return L def Partition(L, left, right): pivotkey = L[left] while left < right: while left < right and L[right] >= pivotkey: right -= 1 L[left] = L[right] while left < right and L[left] <= pivotkey: left += 1 L[right] = L[left] L[left] = pivotkey return left L = [5, 9, 1, 11, 6, 7, 2, 4] print quick_sort(L)
快速排序需要提供三个参数:待排序序列 、序列最小下标值left、序列最大下标值right。让用户提供这三个参数很麻烦。这里写个函数进行封装:
def quick_sort(L): return q_sort(L, 0, len(L) - 1)
下面看一下q_sort函数:
def q_sort(L, left, right): if left < right: pivot = Partition(L, left, right) q_sort(L, left, pivot - 1) q_sort(L, pivot + 1, right) return L
这个函数的核心是pivot = Partition(L, left, right),在执行它之前,列表的值为[5, 9, 1, 11, 6, 7, 2, 4],而Partition函数做的事情是找到一个分组标准,然后进行分组,让它左边的值比它小,右边的值比它大。
在经过Partition函数分组后,列表变为[4, 2, 1, 5, 6, 7, 11, 9],并把5的下标值(也就是3)返回给pivot,此时列表变成两个小列表[4, 2, 1]和[5, 6, 7, 11, 9] ,之后调用q_sort,就是调用q_sort(L,0, 2)和q_sort(L, 4 ,7),对其进行Partition操作,直到整个列表有序为止。
下面看看关键的Partition函数是如何做的:
def Partition(L, left, right): pivotkey = L[left] while left < right: while left < right and L[right] >= pivotkey: right -= 1 L[left] = L[right] while left < right and L[left] <= pivotkey: left += 1 L[right] = L[left] L[left] = pivotkey return left
以一趟排序为例[5, 9, 1, 11, 6, 7, 2, 4]:
接下来就是用递归分别对子列表进行排序。读者可以自己试试。
pytyhon学习资料
python学习资料