11.分类与监督学习,朴素贝叶斯分类算法

horizonheart 2020-05-09

1.理解分类与监督学习、聚类与无监督学习。

简述分类与聚类的联系与区别。

简述什么是监督学习与无监督学习。

 答:

 (1)分类与聚类:

 分类简单来说,就是根据文本的特征或属性,划分到已有的类别中。也就是说,这些类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。而聚类的理解更简单,就是你压根不知道数据会分为几类,通过聚类分析将数据或者说用户聚合成几个群体,那就是聚类了。聚类不需要对数据进行训练和学习。

 分类属于监督学习,聚类属于无监督学习。常见的分类比如决策树分类算法、贝叶斯分类算法等聚类的算法最基本的有系统聚类,K-means均值聚类。

 (2)监督学习与无监督学习

有监督学习即人工给定一组数据,每个数据的属性值也给出,对于数据集中的每个样本,我们想要算法预 测并给出正确答案:回归问题,分类问题。
无监督学习中,数据是没有标签的或者是有一样的标签的。我们不知道数据的含义和作用,只知道是有一个数据集的。数据集可以判断是有两个数据集,自己进行分类,这也就是聚类学习。

2.朴素贝叶斯分类算法 实例

利用关于心脏病患者的临床历史数据集,建立朴素贝叶斯心脏病分类模型。

有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数

目标分类变量疾病:

–心梗

–不稳定性心绞痛

新的实例:–(性别=‘男’,年龄<70, KILLP=‘I‘,饮酒=‘是’,吸烟≈‘是”,住院天数<7)

最可能是哪个疾病?

上传手工演算过程。

性别

年龄

KILLP

饮酒

吸烟

住院天数

疾病

1

>80

1

7-14

心梗

2

70-80

2

<7

心梗

3

70-81

1

<7

不稳定性心绞痛

4

<70

1

>14

心梗

5

70-80

2

7-14

心梗

6

>80

2

7-14

心梗

7

70-80

1

7-14

心梗

8

70-80

2

7-14

心梗

9

70-80

1

<7

心梗

10

<70

1

7-14

心梗

11

>80

3

<7

心梗

12

70-80

1

7-14

心梗

13

>80

3

7-14

不稳定性心绞痛

14

70-80

3

>14

不稳定性心绞痛

15

<70

3

<7

心梗

16

70-80

1

>14

心梗

17

<70

1

7-14

心梗

18

70-80

1

>14

心梗

19

70-80

2

7-14

心梗

20

<70

3

<7

不稳定性心绞痛

解:

 11.分类与监督学习,朴素贝叶斯分类算法

 11.分类与监督学习,朴素贝叶斯分类算法

3.使用朴素贝叶斯模型对iris数据集进行花分类。

尝试使用3种不同类型的朴素贝叶斯:

  • 高斯分布型
  • 多项式型
  • 伯努利型

并使用sklearn.model_selection.cross_val_score(),对各模型进行交叉验证。

 (1) 三种不同类型的朴素贝叶斯

a 代码:

11.分类与监督学习,朴素贝叶斯分类算法

 b 运行结果:
11.分类与监督学习,朴素贝叶斯分类算法

(2)交叉验证:

a代码:

11.分类与监督学习,朴素贝叶斯分类算法

b 运行结果:

11.分类与监督学习,朴素贝叶斯分类算法

由运行结果可以看出,伯努利的贝叶斯准确率相对于其他两种是低了很多,因此得出高斯分布和多项式更适合这一组数据。

相关推荐