changjiang 2017-08-03
应用MapReduce(1)
编写一个数据去重的MapReduce应用
一、准备数据
文件1
200001-3-1 a
200001-3-2 b
200001-3-3 c
200001-3-4 d
200001-3-5 a
200001-3-6 b
200001-3-7 c
200001-3-3 c
文件2
200002-3-1 a
200002-3-2 b
200002-3-3 c
200001-3-4 d
200001-3-5 a
200002-3-6 b
200002-3-7 c
200001-3-3 c
二、代码实现
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class Dedup {
// map将输入中的value复制到输出数据的key上,并直接输出
public static class Map extends Mapper<Object, Text, Text, Text> {
private static Text line = new Text();// 每行数据
// 实现map函数
public void map(Object key, Text value, Context context) throws IOException,
InterruptedException {
line = value;
context.write(line, new Text(""));
}
}
// reduce将输入中的key复制到输出数据的key上,并直接输出
public static class Reduce extends Reducer<Text, Text, Text, Text> {
// 实现reduce函数
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException,
InterruptedException {
context.write(key, new Text(""));
}
}
public static void main(String[] args) throws Exception {
System.setProperty("hadoop.home.dir", "/zrjapp/hadoop-2.8.1");
//System.setProperty("hadoop.home.dir", "D:\\hadoop-2.8.1");
Configuration conf = new Configuration();
// 这句话很关键
conf.set("mapred.job.tracker", "localhost:9001");
//conf.set("mapred.job.tracker", "192.168.1.177:9001");
String[] ioArgs = new String[] {"/zrjapp/hadoop-2.8.1/file", "/zrjapp/hadoop-2.8.1/output"};
//String[] ioArgs = new String[] {"D:\\hadoop-2.8.1\\file", "D:\\hadoop-2.8.1\\output"};
String[] otherArgs = new GenericOptionsParser(conf, ioArgs).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: Data Deduplication <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "Data Deduplication");
job.setJarByClass(Dedup.class);
// 设置Map、Combine和Reduce处理类
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);
// 设置输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
// 设置输入和输出目录
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
如果在window环境开发,以上代码想使用开发工具调试还需要做以下工作
1、首先创建maven项目
pom.xml
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-api</artifactId>
<version>2.2</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.2</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-1.2-api</artifactId>
<version>2.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.8.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>2.8.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.8.1</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<configuration>
<archive>
<manifest>
<mainClass>com.lsw.hadoop.Dedup</mainClass>
<addClasspath>true</addClasspath>
<classpathPrefix>lib/</classpathPrefix>
</manifest>
</archive>
<classesDirectory>
</classesDirectory>
</configuration>
</plugin>
<plugin>
<artifactId>maven-dependency-plugin</artifactId>
<executions>
<execution>
<id>copy-dependencies</id>
<phase>package</phase>
<goals>
<goal>copy-dependencies</goal>
</goals>
<configuration>
<outputDirectory>${project.build.directory}/lib</outputDirectory>
<overWriteReleases>false</overWriteReleases>
<overWriteSnapshots>false</overWriteSnapshots>
<overWriteIfNewer>true</overWriteIfNewer>
<!-- <excludeTransitive>true</excludeTransitive> 不包含间接引用的jar包 -->
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<appendAssemblyId>false</appendAssemblyId>
<descriptors>
<descriptor>${basedir}/assembly.xml</descriptor>
</descriptors>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
<pluginManagement>
<plugins>
<!-- Ignore/Execute plugin execution -->
<plugin>
<groupId>org.eclipse.m2e</groupId>
<artifactId>lifecycle-mapping</artifactId>
<version>1.0.0</version>
<configuration>
<lifecycleMappingMetadata>
<pluginExecutions>
<pluginExecution>
<pluginExecutionFilter>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<versionRange>[1.0.0,)</versionRange>
<goals>
<goal>copy-dependencies</goal>
<goal>unpack</goal>
</goals>
</pluginExecutionFilter>
<action>
<ignore />
</action>
</pluginExecution>
</pluginExecutions>
</lifecycleMappingMetadata>
</configuration>
</plugin>
</plugins>
</pluginManagement>
</build>2、配置hadoop本地环境
只是建立项目编写mapreduce就想本地连接远程hadoop调试是不可能的,需要配置本地hadoop环境
否则在还行main方法时会报出异常:“HADOOP_HOME and hadoop.home.dir are unset”
解决:
(1)把远程的hadoop二进制包在window本地环境解压一份,根据实际情况配置环境变量配置HADOOP_HOME

path中添加%HADOOP_HOME%\bin;%HADOOP_HOME%\sbin;

(2)下载(根据不同版本的hadoop下载相应文件,本例子hadoop2.8.1)并把hadoop.dll和winutils.exe及其附属(如果报错需要hadoop.exp、hadoop.lib、hadoop.pdb、libwinutils.lib、winutils.pdb)放到hadoop/bin中,hadoop.dll放一份到C:\Windows\System32下
(3)在本地工具执行main方法,本地会得到计算结果,会生成output目录

查看生产的计算文件
200001-3-1 a
200001-3-2 b
200001-3-3 c
200001-3-4 d
200001-3-5 a
200001-3-6 b
200001-3-7 c
200002-3-1 a
200002-3-2 b
200002-3-3 c
200002-3-6 b
200002-3-7 c
计算结果已经排重
(4)也可以打ZIP包放到安装了hadoop的linux执行,要把所有依赖jar包也一起打包

java -jar ***.jar
或者以下面例子方式执行
bin/hadoop jar hadoop-0.0.1-SNAPSHOT.jar com.lcore.hadoop.EventCount /test/input /test/input/out
通过实现MapReduce计算结果保存到MySql数据库过程,掌握多种方式保存计算结果的技术,加深了对MapReduce的理解;创建maven项目,项目名称hdfs,这里不再说明。红色部分为增加内容: