meylovezn 2019-11-03
面向对象三要素之一:继承inheritance。人类和猫类都是继承自动物类。
个体继承自父母,继承了父母的一部分特征,但也可以有自己的个性。在面向对象的世界中,从父类继承,就可以直接拥有父类的属性和方法,这样可以减少代码,多复用。子类可以定义自己的属性和方法。
先看一个不用继承的例子:
class Animal:
def shout(self):
print("Animal shouts")
a = Animal()
a.shout()
class Cat:
def shout(self):
print("cat shouts")
c = Cat()
c.shout()
结果为:
Animal shouts
cat shouts上面的两个类虽然有关系,但是定义时并没有建立这种关系,而是各自完成定义。
动物类和猫类都有吃,但是它们的吃有区别,所以分别定义。
class Animal:
def __init__(self,name):
self._name = name
def shout(self):#一个通用的吃方法
print("{} shouts".format(self.__class__.__name__))
@property
def name(self):
return self._name
a = Animal("monster")
a.shout()
class Cat(Animal):
pass
cat = Cat("garfield")
cat.shout()
print(cat.name)
class Dog(Animal):
pass
dog = Dog("ahuang")
dog.shout()
print(dog.name)
结果为:
Animal shouts
Cat shouts
garfield
Dog shouts
ahuang上例可以看出,通过继承,猫类、狗类不用写代码,直接继承了父类的属性和方法。
继承
class Cat(Animal)这种形式就是从父类继承,括号中写上继承的类的列表。
父类
Animal就是Cat的父类,也称为基类、超类。
子类
Cat就是Animal的子类,也称为派生类。
格式如下:
class 子类名(基类1,基类2,……):
语句块如果定义时,没有基类列表,等同于继承自object。在Python3中,object类就是所有对象的根基类。
class A:
pass
#等价于
class A(object):
pass注意,上例在Python2中,两种写法是不同的。
Python支持多继承,继承也可以分为多级。
查看继承的特殊属性和方法有:
__base__:类的基类
__bases__:类的基类元组
__mro__:显示方法查找顺序,基类的元组。
mro()方法,同__mro__,比如int.mro()
__subclasses__()类的子类列表,int.__subclasses__()。
class Animal():
x = 123
def __init__(self,name):
self._name = name
@property
def name(self):
return self._name
def shout(self):
print("animal shout")
class Cat(Animal):
x = "cat"
def shout(self):#override
print("miao")
class Garfield(Cat):
pass
class PersiaCat(Cat):
pass
class Dog(Animal):
def run(self):
print("dog run")
tom = Cat("tom")
print(tom.name)
print(tom.shout())
dog = Dog("ahuang")
print(dog.name)
print(dog.shout())
gf = Garfield("gf")
gf.shout()
print("gf.x",gf.x)
print("gf",gf.__dict__)
print("gf.mro = {}".format(gf.__class__.__mro__))#祖先列表,继承链,应该注意,类才有这些方法,实例没有。
print("gf.bases = {}".format(gf.__class__.__bases__))
结果为:
tom
miao
None
ahuang
animal shout
None
miao
gf.x cat
gf {‘_name‘: ‘gf‘}
gf.mro = (<class ‘__main__.Garfield‘>, <class ‘__main__.Cat‘>, <class ‘__main__.Animal‘>, <class ‘object‘>)
gf.bases = (<class ‘__main__.Cat‘>,)class Animal:
__COUNT = 100
HEIGHT = 0
def __init__(self,age,weight,height):
self.__COUNT+=1
self.age = age
self.__weight = weight
self.HEIGHT = height
def eat(self):
print("{} eat ".format(self.__class__.__name__))
def __getweight(self):
print(self.__weight)
@classmethod
def showcount1(cls):
print(cls.__COUNT)
@classmethod
def __showcount2(cls):
print(cls.__COUNT)
def showcount3(self):
print(self.__COUNT)
class Cat(Animal):
NAME = "CAT"
__COUNT = 200
#c = Cat()__init__函数参数错误
c = Cat(3,5,15)
c.eat()
print(c.HEIGHT)
#print(c.__COUNT)#私有的不可访问
#c.show__weight()#私有的不可访问
c.showcount1()
#c.__showcount2()#私有的不可访问
c.showcount3()
print(c.NAME)
print("{}".format(Animal.__dict__))
print("{}".format(Cat.__dict__))
print(c.__dict__)
print(c.__class__.mro())
结果为:
Cat eat
15
100
101
CAT
{‘__module__‘: ‘__main__‘, ‘_Animal__COUNT‘: 100, ‘HEIGHT‘: 0, ‘__init__‘: <function Animal.__init__ at 0x0000000005A796A8>, ‘eat‘: <function Animal.eat at 0x0000000005A79730>, ‘_Animal__getweight‘: <function Animal.__getweight at 0x0000000005A797B8>, ‘showcount1‘: <classmethod object at 0x0000000005A74E10>, ‘_Animal__showcount2‘: <classmethod object at 0x0000000005A74748>, ‘showcount3‘: <function Animal.showcount3 at 0x0000000005A79488>, ‘__dict__‘: <attribute ‘__dict__‘ of ‘Animal‘ objects>, ‘__weakref__‘: <attribute ‘__weakref__‘ of ‘Animal‘ objects>, ‘__doc__‘: None}
{‘__module__‘: ‘__main__‘, ‘NAME‘: ‘CAT‘, ‘_Cat__COUNT‘: 200, ‘__doc__‘: None}
{‘_Animal__COUNT‘: 101, ‘age‘: 3, ‘_Animal__weight‘: 5, ‘HEIGHT‘: 15}
[<class ‘__main__.Cat‘>, <class ‘__main__.Animal‘>, <class ‘object‘>]从父类继承,自己没有的,就可以到父类中找。
私有的都是不可访问的,但是本质上依然是改了名称放在这个属性所在类的__dict__中了,知道这个新名称就可以直接找到这个隐藏的变量,但是这是个黑魔法,应该慎用。
class Animal():
x = 123
def __init__(self,name):
self._name = name
self.__age = 10
@property
def name(self):
return self._name
def shout(self):
print("animal shout")
class Cat(Animal):
x = "cat"
def shout(self):#override
print("miao")
class Garfield(Cat):
pass
class PersiaCat(Cat):
pass
tom = Garfield("tom")
print(tom.name)
print(tom.shout())
print(tom.__dict__)
print(Garfield.__dict__)
print(Cat.__dict__)
print(Animal.__dict__)
结果为:
tom
miao
None
{‘_name‘: ‘tom‘, ‘_Animal__age‘: 10}
{‘__module__‘: ‘__main__‘, ‘__doc__‘: None}
{‘__module__‘: ‘__main__‘, ‘x‘: ‘cat‘, ‘shout‘: <function Cat.shout at 0x03FB7F60>, ‘__doc__‘: None}
{‘__module__‘: ‘__main__‘, ‘x‘: 123, ‘__init__‘: <function Animal.__init__ at 0x03FB7228>, ‘name‘: <property object at 0x03FD3210>, ‘shout‘: <function Animal.shout at 0x03FB7E40>, ‘__dict__‘: <attribute ‘__dict__‘ of ‘Animal‘ objects>, ‘__weakref__‘: <attribute ‘__weakref__‘ of ‘Animal‘ objects>, ‘__doc__‘: None}class Animal():
x = 123
def __init__(self,name):
self._name = name
self.__age = 10
@property
def name(self):
return self._name
def shout(self):
print("animal shout")
class Cat(Animal):
x = "cat"
def __init__(self,name):
Animal.__init__(self,name)#调整顺序,执行结果不同
self.catname = name#改成self._name会覆盖前面的_name
def shout(self):#override
print("miao")
tom = Cat("tom")
print(tom.name)
print(tom.shout())
print(tom.__dict__)
print(Cat.__dict__)
print(Animal.__dict__)
结果为:
tom
miao
None
{‘_name‘: ‘tom‘, ‘_Animal__age‘: 10, ‘catname‘: ‘tom‘}
{‘__module__‘: ‘__main__‘, ‘x‘: ‘cat‘, ‘__init__‘: <function Cat.__init__ at 0x03FDC108>, ‘shout‘: <function Cat.shout at 0x03FDC150>, ‘__doc__‘: None}
{‘__module__‘: ‘__main__‘, ‘x‘: 123, ‘__init__‘: <function Animal.__init__ at 0x03FDC030>, ‘name‘: <property object at 0x03FB9840>, ‘shout‘: <function Animal.shout at 0x03FDC0C0>, ‘__dict__‘: <attribute ‘__dict__‘ of ‘Animal‘ objects>, ‘__weakref__‘: <attribute ‘__weakref__‘ of ‘Animal‘ objects>, ‘__doc__‘: None}总结:
继承时,公有的,子类和实例都可以随意访问,私有成员被隐藏,子类和实例不可直接访问,当私有变量所在的类内的方法中可以访问这个私有变量。
Python通过自己一套实现和其他语言一样的面向对象的继承机制。
属性查找顺序
实例的__dict__》类__dict__如果有继承==》父类__dict__
如果搜索这些地方后没有找到就会抛异常,先找到就立即返回了。
class Animal():
def shout(self):
print("animal shouts")
class Cat(Animal):
#覆盖了父类方法
def shout(self):
print("miao")
a = Animal()
a.shout()
c = Cat()
c.shout()
print(a.__dict__)
print(c.__dict__)
print(Animal.__dict__)
print(Cat.__dict__)
结果为:
animal shouts
miao
{}
{}
{‘__module__‘: ‘__main__‘, ‘shout‘: <function Animal.shout at 0x0000000005A79D90>, ‘__dict__‘: <attribute ‘__dict__‘ of ‘Animal‘ objects>, ‘__weakref__‘: <attribute ‘__weakref__‘ of ‘Animal‘ objects>, ‘__doc__‘: None}
{‘__module__‘: ‘__main__‘, ‘shout‘: <function Cat.shout at 0x0000000005A79C80>, ‘__doc__‘: None}cat能否覆盖自己的方法?
class Animal():
def shout(self):
print("animal shouts")
class Cat(Animal):
#覆盖了父类方法
def shout(self):
print("miao")
#覆盖了自身的方法,显式调用了父类的方法
def shout(self):
print(super())
print(super(Cat,self))
super().shout()
super(Cat,self).shout()#等价与super()
self.__class__.__base__.shout(self)#不推荐
a = Animal()
a.shout()
c = Cat()
c.shout()
print(a.__dict__)
print(c.__dict__)
print(Animal.__dict__)
print(Cat.__dict__)
结果为:
animal shouts
<super: <class ‘Cat‘>, <Cat object>>
<super: <class ‘Cat‘>, <Cat object>>
animal shouts
animal shouts
animal shouts
{}
{}
{‘__module__‘: ‘__main__‘, ‘shout‘: <function Animal.shout at 0x0000000005A79510>, ‘__dict__‘: <attribute ‘__dict__‘ of ‘Animal‘ objects>, ‘__weakref__‘: <attribute ‘__weakref__‘ of ‘Animal‘ objects>, ‘__doc__‘: None}
{‘__module__‘: ‘__main__‘, ‘shout‘: <function Cat.shout at 0x0000000005A69BF8>, ‘__doc__‘: None}super()可以访问到父类的属性,具体原理后面再说。
那对于类方法和静态方法呢?
class Animal():
@classmethod
def class_method(cls):
print("class_method_animals")
@staticmethod
def static_method():
print("static_method_animals")
class Cat(Animal):
@classmethod
def class_method(cls):
print("class_method_cat")
@staticmethod
def static_method():
print("static_method_cat")
c = Cat()
c.class_method()
c.static_method()
结果为:
class_method_cat
static_method_cat这些方法都可以覆盖,原理都一样,属性字典的搜索顺序。
class Animal():
x = 123
def __init__(self,name):
self._name = name
self.__age = 10
@property
def name(self):
return self._name
def shout(self):
print("animal shout")
@classmethod
def clsmtd(cls):
print(cls,cls.__name__)
class Cat(Animal):
x = "cat"
def __init__(self,name):
Animal.__init__(self,name)#调整顺序,执行结果不同
self.catname = name#改成self._name会覆盖前面的_name
def shout(self):#override
print("miao")
@classmethod
def clsmtd(cls):
print(cls,cls.__name__)
class Garfield(Cat):
pass
tom = Garfield("tom")
print(tom.clsmtd())#注意结果
print(tom.__dict__)
print(Cat.__dict__)
print(Animal.__dict__)
结果为:
<class ‘__main__.Garfield‘> Garfield
None
{‘_name‘: ‘tom‘, ‘_Animal__age‘: 10, ‘catname‘: ‘tom‘}
{‘__module__‘: ‘__main__‘, ‘x‘: ‘cat‘, ‘__init__‘: <function Cat.__init__ at 0x03FDC4F8>, ‘shout‘: <function Cat.shout at 0x03FDC4B0>, ‘clsmtd‘: <classmethod object at 0x03FCB990>, ‘__doc__‘: None}
{‘__module__‘: ‘__main__‘, ‘x‘: 123, ‘__init__‘: <function Animal.__init__ at 0x03FB76F0>, ‘name‘: <property object at 0x03FD7AE0>, ‘shout‘: <function Animal.shout at 0x03FDC588>, ‘clsmtd‘: <classmethod object at 0x03FCB9D0>, ‘__dict__‘: <attribute ‘__dict__‘ of ‘Animal‘ objects>, ‘__weakref__‘: <attribute ‘__weakref__‘ of ‘Animal‘ objects>, ‘__doc__‘: None}先看下面这一段代码,有没有问题:
class A:
def __init__(self,a):
self.a = a
class B(A):
def __init__(self,b,c):
self.b = b
self.c = c
def printv(self):
print(self.b)
#print(self.a)#出错吗?会出错。
f = B(200,300)
print(f.__dict__)
print(f.__class__.__bases__)
f.printv()
结果为:
{‘b‘: 200, ‘c‘: 300}
(<class ‘__main__.A‘>,)
200上例代码可知:如果类B定义时声明继承自类A,则在类B中__bases__中可以看到类A。但是这和是否调用类A的构造方法是两回事。
如果B中调用了A的构造方法,就可以拥有父类的属性了,如何理解这句话?观察B的实例f的__dict__中的属性。
class A:
def __init__(self,a,d = 10):
self.a = a
self.__d = d
class B(A):
def __init__(self,b,c):
A.__init__(self,b+c,b-c)
self.b = b
self.c = c
def printv(self):
print(self.b)
#print(self.a)#出错吗?
f = B(200,300)
print(f.__dict__)
print(f.__class__.__bases__)
f.printv()
结果为:
{‘a‘: 500, ‘_A__d‘: -100, ‘b‘: 200, ‘c‘: 300}
(<class ‘__main__.A‘>,)
200作为好的习惯,如果父类定义了__init__方法,你就该在子类的__init__中调用它。那子类什么时候自动调用父类的__init__方法呢?
示例1
class A:
def __init__(self):
self.a1 = "a1"
self.__a2 = "a2"
print("A init")
class B(A):
pass
b = B()
print(b.__dict__)
结果为:
A init
{‘a1‘: ‘a1‘, ‘_A__a2‘: ‘a2‘}B实例的初始化会自动调用基类A的__init__方法。
实例2
class A:
def __init__(self):
self.a1 = "a1"
self.__a2 = "a2"
print("A init")
class B(A):
def __init__(self):
self.b1 = "b1"
print("B init")
b = B()
print(b.__dict__)
结果为:
B init
{‘b1‘: ‘b1‘}B实例的初始化__init__方法不会自动调用父类的初始化__init__方法,需要手动调用。
class A:
def __init__(self):
self.a1 = "a1"
self.__a2 = "a2"
print("A init")
class B(A):
def __init__(self):
self.b1 = "b1"
print("B init")
A.__init__(self)
b = B()
print(b.__dict__)
结果为:
B init
A init
{‘b1‘: ‘b1‘, ‘a1‘: ‘a1‘, ‘_A__a2‘: ‘a2‘}如何正确初始化
class Animal:
def __init__(self,age):
print("Animal init")
self.age = age
def show(self):
print(self.age)
class Cat(Animal):
def __init__(self,age,weight):
print("cat init")
self.age = age+1
self.weight = weight
c = Cat(10,5)
c.show()
结果为:
cat init
11上例我们前面都分析过,不会调用父类的__init__方法的,这就会导致没有实现继承效果。所以在子类的__init__方法中,应该显示调用父类的__init__方法。
class Animal:
def __init__(self,age):
print("Animal init")
self.age = age
def show(self):
print(self.age)
class Cat(Animal):
def __init__(self,age,weight):
#调用父类的__init__方法的顺序决定着show方法的结果
super().__init__(age)
print("cat init")
self.age = age+1
self.weight = weight
#super().__init__(age)
c = Cat(10,5)
c.show()
结果为:
Animal init
cat init
11注意,调用父类的__init__方法,出现在不同的位置,可能导致出现不同的结果。那么直接将上例中所有的实例属性改成私有变量呢?
class Animal:
def __init__(self,age):
print("Animal init")
self.__age = age
def show(self):
print(self.__age)
class Cat(Animal):
def __init__(self,age,weight):
#调用父类的__init__方法的顺序决定着show方法的结果
super().__init__(age)
print("cat init")
self.__age = age+1
self.__weight = weight
#super().__init__(age)
c = Cat(10,5)
c.show()
print(c.__dict__)
结果为:
Animal init
cat init
10
{‘_Animal__age‘: 10, ‘_Cat__age‘: 11, ‘_Cat__weight‘: 5}上例中打印10,原因看__dict__就知道了。因为父类Animal的show方法中__age会被解释为_Animal__age,因此显示的是10,而不是11。
这样的设计好不好,cat的实例c应该显示自己的属性值更好。
解决的办法:一个原则,自己的私有属性,就该自己的方法读取和修改,不要借助其他类的方法,即便是父类或者派生类的方法。
class Singleton: def __new__: # 关键在于这,每一次实例化的时候,我们都只会返回这同一个instance对象 if not hasattr: cls.instance =